ДЕМОНСТРАЦИОННАЯ ПЛАТА ДЛЯ ИС 1273НА094

Руководство пользователя

Содержание

1 Назначение	3
2 Характеристики демонстрационной платы	4
3 Слои и внешний вид демонстрационной платы	4
4 Назначение установленных на плате разъемов	6
5 Схема электрическая принципиальная демонстрационной платы	6
6 Порядок работы с демонстрационной платой	9
6.1 Подготовка ПЛИС к работе	9
6.2 Выбор частоты дискретизации входных данных	. 10
6.3 Система питания	. 11
6.4 Система тактирования	. 11
6.5 Интерфейс ввода аудио данных	. 12
7 Меры безопасности	12

1 Назначение

Демонстрационная плата (далее плата) предназначена для ознакомления с работой микросхемы 1273HA094.

Данные микросхемы являются 24-разрядными сигма-дельта аудио ЦАП с двумя дифференциальными выходами по напряжению. Плата позволяет оценить большинство функций и режимов работы микросхемы, а также характеристики цифро-аналогового преобразования.

На плате установлена ПЛИС, которая работает в соответствии с программой, разработанной пользователем. С ее помощью осуществляется управление микросхемой 1273НА094 и микросхемами периферии, а также выполняется мультиплексирование входных данных от разных источников. Для нормального функционирования ПЛИС на плате установлены все необходимые компоненты. Так же на ней установлен разъем, подключенный к 16 портам ввода/вывода ПЛИС, которые пользователь может использовать по собственному усмотрению.

Для передачи данных от звуковой карты персонального компьютера (ПК) посредством коаксиального кабеля или волоконно-оптического кабеля Toslink на плате установлен S/PDIF приемник с разъемом RCA и оптическим разъемом. Помимо звуковой карты, данные на плату могут подаваться через порт USB, который так же может использоваться для управления платой. Для этого используется микросхема, выполняющая преобразование данных из стандарта USB в стандарт UART и обратно. Так же на плате установлен разъем для подключения внешних цифровых устройств (процессора, микроконтроллера, ПЛИС).

Для питания платы рекомендуется использовать внешний источник питания с постоянным напряжением 12 В и током не менее 200 мА. На плате установлены два стабилизатора напряжения для питания аналоговой части и три стабилизатора напряжения для питания цифровой части платы.

Дифференциальные выходы каждого канала ЦАП подключены к схемам преобразования дифференциального сигнала в несимметричный, реализованным на операционных усилителях. Выходы операционных усилителей соединены со стереоразъемами стандарта 3,5 мм для подключения внешних наушников или усилителей низкой частоты.

2 Характеристики демонстрационной платы

Напряжение питания: + 12 В.

Ток потребления: 200 мА.

Габаритные размеры демонстрационной платы: 149×118 мм².

3 Слои и внешний вид демонстрационной платы

На рисунке 1 представлен внешний вид демонстрационной платы.

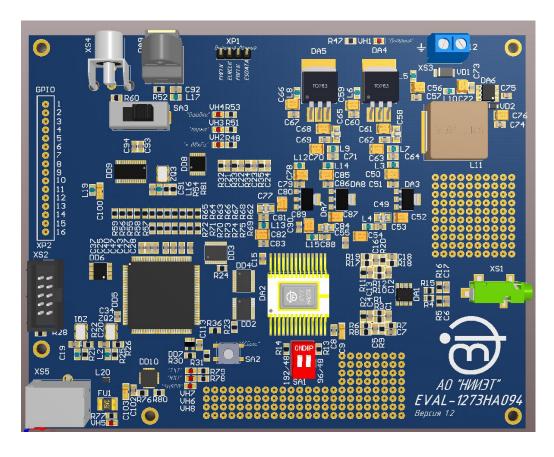


Рисунок 1 – Внешний вид демонстрационной платы

На рисунке 2 представлен верхний слой металла демонстрационной платы.

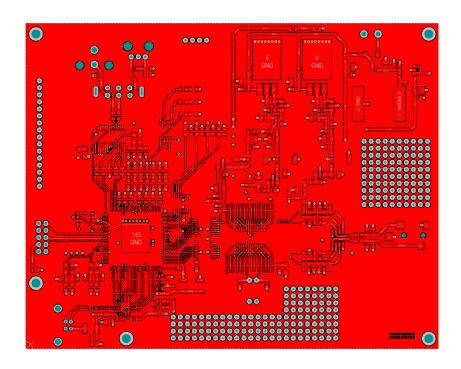


Рисунок 2 — Слой верхней стороны демонстрационной платы (слой металла)

На рисунке 3 представлен нижний слой металла демонстрационной платы.

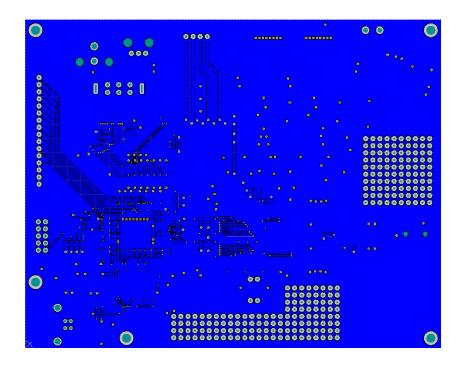


Рисунок 3 — Слой нижней стороны демонстрационной платы (слой металла)

4 Назначение установленных на плате разъемов

- DA9 оптический вход S/PDIF приемника;
- XS4 коаксиальный вход S/PDIF приемника;
- ХР1 разъем для подключения внешних цифровых устройств;
- XP2 разъем ввода/вывода общего назначения;
- XS1 аудиовыход;
- XS2 разъем для подключения программатора;
- XS3 разъем для подключения внешнего источника питания +12 В;
- XS5 разъем USB тип В.

5 Схема электрическая принципиальная демонстрационной платы

Схема электрическая принципиальная демонстрационной платы представлена документом КФДЛ.301411.272 ЭЗ.

Перечень компонентов, используемых при изготовлении платы, приведен в таблице 1.

Таблица 1 – Перечень используемых компонентов

Позиционное		
обозначение	Наименование	ли- че-
ооозначение		
1	2	
1		3
DAI	Микросхемы	1
DA1	ADA4075-2, SOIC-8, Analog Devices	1
DA2	1273HA094, в корпусе 4119.28-1, АО «НИИЭТ»	1
DA3	MCP1826S-2502E, SOT-223-3, Microchip Technology	1
DA4,DA5	LM2940CSX-5.0/NOPB, TO-263-3, Texas Instruments	2
DA6	MAX765ESA+T, SOIC-8, Maxim Integrated	1
DA7	MCP1826ST-1202E, SOT-223-3, Microchip Technology	1
DA8	MCP1826ST-3302E, SOT-223-3, Microchip Technology	1
DA9	PLR135-T9, Everlight	1
DD2-DD4	TXB0108PWRG4, TSS0P-20, Texas Instruments	3
DD5	EP4CE6E22C8, TQFP-144, Intel	1
DD6	EPCQ4ASI8N, SOIC-8, Intel	1
DD7	ADM8322, SOT-23-5, Analog Devices	1
DD8	74LV05A, TSS0P-14, Nexperia	1
DD9	CS8416, TSS0P-28, Circus Logic	1
DD10	CP2102N, QFN-28, Silicon Labs	1
	Конденсаторы	
C1,C2	Керамический чип конденсатор $270 \text{ п}\Phi \pm 10\% 50 \text{ B } 0805, \text{ AVX}$	2
C2, C3, C8, C10, C14, C15,	Керамический чип конденсатор	46
C74, C25-C48, C75, C92,	$100 \text{ H}\Phi \pm 10\% 50 \text{ B } 0805, \text{AVX}$	
C98, C99,C101,C104-C113		
C4, C13	Керамический чип конденсатор	2
	$1 \text{ H}\Phi \pm 10\% 50 \text{ B } 0805, \text{AVX}$	
C5, C16	Керамический чип конденсатор	2
	$2.7 \text{ H}\Phi \pm 10\% 50 \text{ B } 0805, \text{AVX}$	
C6, C17	Керамический чип конденсатор	
	$2.2 \text{ H}\Phi \pm 10\% 50 \text{ B } 0805, \text{AVX}$	
C7, C18	Керамический чип конденсатор	2
	$820 \Pi\Phi \pm 10\% 50 \text{ B } 0805, \text{AVX}$	
C9, C11	Танталовый чип конденсатор	2
	15 мк Φ ± 10% 16 B Case A, AVX	
C19, C20, C91, C102	Керамический чип конденсатор	4
	$0.1 \text{ мк}\Phi \pm 10\% 50 \text{ B } 0805, \text{AVX}$	
C21-C24	Керамический чип конденсатор	4
	$47 \text{n}\Phi \pm 10\% 50 \text{B} 0805, \text{AVX}$	
C49, C58, C65, C77, C84	Проходной чип конденсатор NFE31PT222Z1E9,	5
	Murata Power Solutions	
C50, C56, C59, C66, C72,	Танталовый чип конденсатор	7
C78, C85	47 мк $\Phi \pm 10\%$ 16 B Case A, AVX	
C51, C53, C55, C57, C60,	Керамический чип конденсатор	17
C62, C64, C67, C69, C71,	$10 \text{ мк}\Phi \pm 10\% 50 \text{ B } 0805, \text{AVX}$	
C73, C79, C81, C83, C86,		
C88, C90		
C52, C54, C61, C63, C68,	Танталовый чип конденсатор	11
C70,C76,C80,C82,C87,C89	33 мк $\Phi \pm 10\%$ 16 B Case B, AVX	

Продолжение таблицы 1

1	2	3
C93, C94	Керамический чип конденсатор	2
	$10 \text{ H}\Phi \pm 10\% 50 \text{ B } 0805, \text{AVX}$	
C95	Керамический чип конденсатор	1
	$22000 \pi\Phi \pm 10\% 50 \text{ B } 0805, \text{ AVX}$	
C96	Керамический чип конденсатор	1
	$1000 \pi\Phi \pm 10\% 50 \text{ B } 0805, \text{AVX}$	
C97, C100	Танталовый чип конденсатор	2
2102	$10 \text{ мк}\Phi \pm 10\% \text{ 16 B Case A, AVX}$	1
C103	Танталовый чип конденсатор	
	$4,7$ мк $\Phi \pm 10\%$, 10 B, Case A, AVX	
D1 D10	Чип резисторы 2.01 От 1.10 (/ 0.25 P= 0.005 MOA Server	2
R1, R10	$3.01 \text{ kOm} \pm 10.0\% - 0.25 \text{ Br} 0.805, \text{ KOA Speer}$	2 2
R2, R11	2,8 κO _M ± 10 %-0,25 Bτ 0805, KOA Speer 1,5 κO _M ± 10 %-0,25 Bτ 0805, KOA Speer	2
R3, R12 R4, R15	549 Om ± 10 %-0,25 Bt 0805, KOA Speer	2
R5, R16	53,6 кОм ± 10 %-0,25 Вт 0805, КОА Speer	2
R6, R17	806 Om ± 10 %-0,25 Bt 0805, KOA Speer	2
R7, R18	499 Om ± 10 %-0,25 BT 0805, KOA Speer	2
R8, R19	Опционально, 0805	2
R9, R20, R76	1 кОм ± 10 %-0,25 Вт 0805, КОА Speer	3
R28	$0 \text{ Om} \pm 10 \%$ -0,25 Bt 0805, KOA Speer	1
R29	25 Om ± 10 % -0,25 Bt 0805, KOA Speer	1
R32-R35	100 Om ± 10 % -0,25 BT 0805, KOA Speer	4
R47,R48,R51,R53,R77-R80	$400 \text{ OM} \pm 10 \% -0.25 \text{ BT } 0805, \text{ KOA Speer}$	8
R13, R14, R21-R27, R30,	10 кОм ± 10 % -0,25 Вт 0805, КОА Speer	27
R31, R36-R46, R52, R54,	10 No.12 10 /0 0,20 21 0000, 110112 pool	
R81		
R49, R50, R56-R59	150 Ом ± 10 %-0,25 Вт 0805, КОА Speer	6
R55, R62-R75	47,5 Ом ± 10 %-0,25 Вт 0805, КОА Speer	15
R60, R61	75 Ом ± 10 %-0,25 Вт 0805, KOA Speer	2
	Диоды	
VD1	Выпрямительный диод VS-2EYH02HM3/H, D0-221AD, Vishay	1
	Semiconductors	
VD2	Диод Шоттки RB168MM150TFTR, SOD-123FL,	1
	ROHM Semiconductors	
VD3	Диоды для подавления переходных скачков напряжения	1
	SP0503BAHTG, Littelfuse	
VH1-VH8	Светодиод красный, 0805, Kingbright	8
X 1 X 10 X 10 X 10	Катушки индуктивности	1.0
L1-L10, L12-L19	Ферритовая бусина BLM21PG331SN1, 0805 Murata Electronics	18
L11	Катушка постоянной индуктивности SRP1770C-470M, Bourns	1
L20	Синфазные дроссели DLW21HN900SQ2L, Murata Electronics	1
FU1	Предохранители	1
rui	Плавкий самовосстанавливающийся предохранитель, MF-MSMF050, Bourns	1
	Переключатели	
SA1	Переключатели DIP-выключатель, 2 позиции, 2,54 мм, C&K Switches	1
SA2	Тактильный переключатель EVP-BF6C1A000, Panasonic	1
SA3	Ползунковый переключатель SS2F07G7-G, Switronic	1
D113	Tronsynkobbin hepekino-arenb bb21 0/0/-0, bwittoille	1

Окончание таблицы 1

1	2	3
	Разъемы	
XP1	Вилка на плату прямая 4 контакта, 2,54 мм, PLS4, NXU	1
XP2	Вилка на плату прямая 16 контактов, 2,54 мм, PLS16, NXU	
XS1	Разъем TRS SJ-3524-SMT, CUI	
XS2	Разъем IDC-10MR, Connfly	
XS3	Клеммник винтовой прямой 2 контакта 5,08 мм,	
	Wurth Electronics	
XS4	Разъем RCA RCJ-011, CUI	
XS5	Разъем USB тип B, Connfly	
	Кварцевые генераторы	
ZQ1, ZQ3	Кварцевый генератор 12,288 МГц, 5×3,2, Abracon	
ZQ2	Кварцевый генератор 20 МГц, 5×3,2, Abracon	

Предприятие оставляет за собой право на внесение изменений в схему и разводку демонстрационной платы, а также замену комплектующих на аналогичные компоненты без снижения ее потребительских качеств.

6 Порядок работы с демонстрационной платой

6.1 Подготовка ПЛИС к работе

Для функционирования демонстрационной платы необходимо разработать и скомпилировать программу. Для этого необходима программа «Quartus», компании Intel. Версия программы должна быть не ниже 10.0. После успешной разработки и отладки программы будет получен загрузочный файл, который необходимо загрузить в память при помощи программатора «USB Blaster», внешний вид которого представлен на рисунке 4.

Рисунок 4 – Внешний вид программатора «USB Blaster»

Для подключения программатора к плате предназначен разъем XS2, представленный на рисунке 5.

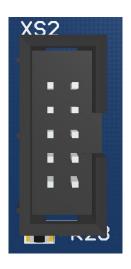


Рисунок 5 – Внешний вид разъема для подключения программатора

После успешной загрузки файла, ПЛИС будет сконфигурирована в соответствии с функциями, описанными в программе.

6.2 Выбор частоты дискретизации входных данных

Для корректной работы микросхемы 1273HA094 необходимо выполнить настройку частоты дискретизации входных данных. Для этого на плате установлен переключатель SA1, представленный на рисунке 6.

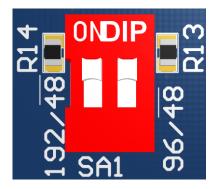


Рисунок 6 – Переключатель, предназначенный для настройки частоты дискретизации

Настройка частоты дискретизации входных данных осуществляется в соответствии с таблицей 2.

Таблица 2 – Настройка частоты дискретизации входных данных

Частота	192/48	96/48
дискретизации		
от 44,1 кГц до 48 кГц	0	0
от 88,2 кГц до 96 кГц	0	1
от 176,4 кГц до 192 кГц	1	0

6.3 Система питания

Питание платы осуществляется от внешнего источника постоянного напряжения или аккумулятора с напряжением 12 В. Максимальный ток потребления демонстрационной платы не превышает 200 мА. Источник питания необходимо подключить к разъему XS3.

На плате установлены два линейных стабилизатора с выходным напряжением 5 В. Один необходим для питания аналоговой части микросхемы 1273НА094, а другой для питания цифровой части. Так же на плате установлены 3 линейных стабилизатора с выходным напряжением 3,3 В, 2,5 В и 1,2 В, необходимые для питания ПЛИС и микросхем периферии. Для питания операционных усилителей необходимо питание с напряжением ±12 В. Для этого на плате установлен импульсный преобразователь с выходным напряжением минус 12 В.

6.4 Система тактирования

К тактовым входам ПЛИС подключены два кварцевых генератора: ZQ1 с частотой выходного сигнала 12,288 МГц и ZQ2 с частотой выходного сигнала 20 МГц.

Тактовый сигнал для микросхемы 1273НА094 подается с выхода ПЛИС и имеет частоту, определенную пользователем.

Так же на плате установлен кварцевый генератор ZQ3 с частотой выходного сигнала 12,288 МГц, который предназначен для тактирования приемника S/PDIF.

6.5 Интерфейс ввода аудио данных

Приемник S/PDIF, установленный на плате, позволяет принимать цифровые аудио данные от звуковой карты ПК. Соединить плату и ПК можно с помощью волоконно-оптического кабеля Toslink, подключенного к разъему оптического приемника DA9, либо с помощью коаксиального кабеля, подключенного к разъему XS4 типа RCA, а также с помощью кабеля USB, подключенного к разъему XS5 типа USB-B. При использовании оптического кабеля необходимо установить переключатель SA3 в правое положение, а при использовании коаксиального кабеля – в левое положение.

Если плата и ПК соединены, и звуковая карта ПК настроена на передачу данных через S/PDIF, то на плате загорится зеленый светодиод VH3. Если приемник не получает данные, то загорится красный светодиод VH4, сообщающий об ошибке. Если частота дискретизации аудио сигнала больше 88 кГц, то загорится оранжевый светодиод VH2.

7 Меры безопасности

Подключение к контактам разъемов осуществлять только при отключенном напряжении питания.

Во избежание ожогов во время функционирования демонстрационной платы не допускается соприкосновение элементов платы с открытыми частями тела оператора.