

КАТАЛОГ

НОВЫЕ РАЗРАБОТКИ

Каталог содержит информацию о новых разработках АО «НИИЭТ»

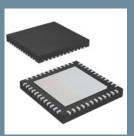
K1946BM014

8-разрядная микро-ЭВМ с RISC-архитектурой и памятью типа Flash, микроконтроллер имеет расширенный температурный режим относительно аналога, высокопроизводительный, низкопотребляющий

annu se

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

- •Тактовая частота 8 МГц для напряжения питания 3,3 B ± 10%;
- •Тактовая частота 16 МГц для напряжения питания 5,0 B ± 10%;
- •Два 8-разрядных таймера/счетчика;
- •16-разрядный таймер/счётчик;
- •3 последовательных порта ввода/вывода;
- •10-разрядный 8-канальный АЦП;
- •4 канала блока ШИМ;
- •Сторожевой таймер (WDT);
- •6 режимов пониженного энергопотребления;
- •Аналоговый компаратор.


ОБЛАСТЬ ПРИМЕНЕНИЯ:

Микросхема К1946ВМ014 может применяться в системах управления оборудованием, робототехнике; функциональных разрядно-зарядных устройствах с программированием; сложных дистанционных системах управления; сетевых устройствах; быстродействующих системах для передачи и обработки данных; сложной бытовой технике; устройствах ввода и отображения информации с тач-скринами (Touch-screen) и других многофункциональных устройствах.

С более подробной информацией вы можете ознакомиться на официальном сайте: www.niiet.ru

K1946BK035

K1946BK028

Малогабаритный 32-разрядный микроконтроллер с периферией, специализированной под задачи управления электроприводом

32-разрядный микроконтроллер в пластиковом корпусе, специализированный под задачи управления электроприводом

- •Процессорное ядро с производительностью 125 DMIPS;
- •Четырёхканальный 12-разрядный АЦП;
- •Один порт последовательного интерфейса SPI;

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

- •Три модуля ШИМ;
- •Система отладки с интерфейсами JTAG и SWD;
- •Четыре 32-разрядных таймера;
- •Модуль CAN с двумя портами ввода-вывода.

ОБЛАСТЬ ПРИМЕНЕНИЯ:

Средства измерений, связи, наблюдения, безопасности, автоматизация производства, медицина, энергетика, промышленность, в том числе электропривод.

В системах ИВЛ, экзоскелетах, миниатюрных интеллектуальных датчиках, в портативной носимой аппаратуре и приборах, имеющих жесткие ограничения по соотношению быстродействие/потребляемая мощность/стоимость.

- Контроллер внешней статической памяти (DMA);
- •Синтезатор частоты на основе ФАПЧ;
- Восемь 32-битных таймеров:
- •Часы реального времени (RTC) с батарейным питанием;
- •Блок АЦП (48 каналов, 12 бит, до 2 М выборок на канал);
- режима «высокого» разрешения;

- вывода;
- •Интерфейс Ethernet 10/100 Мбит/с с интерфейсом MII;
- •Система отладки с интерфейсами JTAG и SWD;
- •4-канальный сигма-дельта демодулятор;
- •Блок конфигурируемых логических элементов;

- •Тактовая частота 200 МГц;
- •Память: Встроенное ОЗУ 256 Кбайт;
- •ПЗУ (FLASH) 1Мбайт:
- •Дополнительная загрузочная память (FLASH) 128 кБайт;
- •Дополнительная пользовательская память данных (FLASH) 64+16
- •Напряжение питания 3,3 В (±5 %) / 1,8 В (±5 %).

- •Процессорное ядро с производительностью 250 DMIPS;
- •32-канальный контроллер прямого доступа к памяти;
- •Двадцать каналов ШИМ, из которых двенадцать с поддержкой
- •Восемь 32-битных таймеров;
- •Четыре импульсных квадратурных декодера;
- •Двенадцать 16-разрядных последовательных порта ввода-
- •Шесть последовательных интерфейсов UART (четыре из них с поддержкой функций управления модемом и кодека ИК связи IrDASIR);

- •Два 1-wire;
- •Блок тригонометрический вычислительный;

- •Архитектура и система команд RISC 32 бит;

- •Интерфейсы: CAN-2, UART-6, SPI-4, I2C-2;

ОБЛАСТЬ применения:

описание:

Представляет собой построенный на базе ядра архитектуры RISC-V 32-разрядный микроконтроллер с внутренней энергонезависимой памятью, многоканальным АЦП, криптографическим сопроцессором, последовательными интерфейсами, системой защиты от несанкционированного доступа и низким током потребления в активном режиме и максимальной частотой работы до 80 МГц.

ОБЛАСТЬ ПРИМЕНЕНИЯ:

- средства измерений, бытовые счетчики газа и электроэнергии:
- автоматизация
- медицина

К1921ВГ015

Новая разработка

32-разрядный ультранизкопотребляющий микроконтроллер RISC-V в пластиковом корпусе

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

- 32-разрядное ЦПУ со встроенным модулем обработки команд с плавающей запятой с одинарной точностью (FPU);
- Блок управления сбросом и синхронизацией (RCU), имеющий в своем составе RC-генератор (1 МГц) и синтезатор частоты с PLL;
- Блок управления режимами энергопотребления;
- Основная Flash-память объемом 1 Мбайт;
- ОЗУО объемом 256 Кбайт;
- ОЗУ1, подключенное к домену батарейного питания, объемом 64 Кбайт:
- Уникальный ID размером 128 бит;
- 32-канальный контроллер прямого доступа к памяти (DMA);
- Блок часов реального времени (RTC) с батарейным питанием, тактированием от внешнего генератора 32,768 кГц, контролем генерации и автоматическим переходом на внутренний генератор в случае сбоев;
- Датчик вскрытия (Tamper Pin) на три входа с питанием от батарейного домена;
- Криптографический сопроцессор, включающий генератор случайных чисел, модули вычисления контрольной суммы СRC32 и шифрования по алгоритмам AES 128/256, «Кузнечик», «Магма». HASH:
- Датчик температуры;
- Сторожевой таймер;
- Независимый сторожевой таймер;
- Одно 8-канальное 16-разрядное сигма-дельта АЦП;
- Одно 8-канальное 12-разрядное АЦП последовательного приближения;
- Два аналоговых компаратора, подключенных к домену батарейного питания;
- Три 16-разрядных порта ввода-вывода;
- Один 32-разрядный таймер;
- Три 16-разрядных таймера;
- Пять приемопередатчиков UART;
- Контроллеры интерфейсов: CAN 2.0B; USB 2.0 Full speed (Device);
- Один контроллер I2C;
- Три контроллера SPI;
- Порт отладки JTAG.

THF-K 10030

GaN- силовой транзистор для работы в ключевом режиме Поставляется в металлокерамическом корпусе КТ-93 или пластиковом корпусе DFN8L(8x8)

Быстрое и контролируемое время спада и нарастания Облегченные требования к затворному драйверу (от 0 В до 6 В)

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЭЛЕКТРИЧЕСКИЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ:

Параметр	Обозначение параметра	Значение
Максимально допустимое постоянное напряжение сток-исток, В	U _{CU MAKC}	100
Максимальный постоянный ток стока, А	I _{C MAKC}	30
Максимально допустимая температура перехода,°С	t _{п макс}	150
Диапазон рабочих температур, °С		от -55 до +150
Тепловое сопротивление переход-корпус транзистора*, °C/Вт	R _{T n-K}	0,5

ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ:

Параметр	Обозначение параметра	Не менее	Тип	Не более
Напряжение пробоя сток-исток $(U_{3M} = 0 \text{ B, } I_{CM,YT} = 25 \text{ мкA}), \text{ B}$	U _{CM MAKC}	100	-	-
Пороговое напряжение ($U_{CM} = U_{3M}$, $I_{C} = 4$ мА), В	U _{nop}	1	1,15	2,7
Ток утечки затвора (U $_{\rm 3M}$ = 6 B, U $_{\rm CM}$ = 0 B), мкА	I _{3yT}	-	120	300
Начальный ток стока (U $_{_{\rm 3M}}$ = 6 B, U $_{_{\rm CM}}$ = 100 B), мкА	C. HAN	-	50	100
Сопротивление сток-исток в открытом состоянии ($U_{3u} = 6 \text{ B}, I_{Cu} = 13 \text{ A}$), мОм	R _{chotk}	-	70	-
Входная емкость (UCИ = 100 B, U3И = 0 B, f = 1 МГц), пФ	C ₁₁	-	286	-
Выходная емкость, пФ	C ₂₂	-	144	-
Проходная емкость, пФ	C ₁₂	-	6	-
Заряд затвора (U $_{_{\rm ЗИ}}$ = 0 до 6 В, U $_{_{\rm CИ}}$ = 50 В), нКл	Q_3	-	6,8	-
Заряд затвор – исток, нКл	Q_{3C}	-	4,3	-
Заряд затвор – сток, нКл	Q _{зи}	-	1,7	-

*При температуре среды 25 °C

ОБЛАСТЬ ПРИМЕНЕНИЯ:

Применяются в широком спектре изделий: в зарядных устройствах для различных гаджетов, электромобилей, в системах управления электродвигателями, системах преобразования электрической энергии для альтернативных источников (солнечные батареи, ветрогенераторы), системах питания беспроводных устройств и космических аппаратов, в робототехнике, в медицинских изделиях и многом другом.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ:

- Максимально допустимое напряжение сток-исток U_{си} = 100 B
- Максимальный постоянный ток стока I_c = 30 A
- Сопротивление сток-исток в открытом состоянии $R_{\text{си}}$ $_{\text{отк}}$ = 70 мОм

Применяются в широком спектре изделий: в зарядных устройствах для различных гаджетов, электромобилей, в системах управления электродвигателями, системах преобразования электрической энергии для альтернативных источников (солнечные батареи, ветрогенераторы), системах питания беспроводных устройств и космических аппаратов, в робототехнике, в медицинских изделиях и многом другом.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ:

- Максимально допустимое напряжение сток-исток $U_{\text{см}} = 200 \text{ B}$
- Максимальный постоянный ток стока
 I_c = 20 A
- Сопротивление сток-исток в открытом состоянии R_{сиотк} = 94 мОм

THГ-К 20020

GaN- силовой транзистор для работы в ключевом режиме Поставляется в металлокерамическом корпусе КТ-93 или пластиковом корпусе DFN8L(8x8) Быстрое и контролируемое время спада и нарастания Облегченные требования к затворному драйверу (от 0 В до 6 В)

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЭЛЕКТРИЧЕСКИЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ:

Параметр	Обозначение параметра	Значение
Максимально допустимое постоянное напряжение сток-исток, В	U _{си макс}	200
Максимальный постоянный ток стока, А	I _{C MAKC}	20
Максимально допустимая температура перехода,°C	t _{n make}	150
Диапазон рабочих температур, °С		от -55 до +150
Тепловое сопротивление переход-корпус транзистора*, °C/Вт	R _{T n-K}	0,5

ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ:

Параметр	Обозначение параметра	Не менее	Тип	Не более
Напряжение пробоя сток-исток ($U_{_{3M}}$ = 0 B, $I_{_{CM,YT}}$ = 30 мкА), В	U _{си макс}	200	-	-
Пороговое напряжение ($U_{CM} = U_{3M}$, $I_{C} = 3,5$ мА), В	U _{nop}	1	1,28	2,7
Ток утечки затвора (U_{3H} = 6 B, U_{CH} = 0 B), мкА	I _{зут}	-	160	350
Начальный ток стока (${\rm U_{_{3M}}}$ = 6 B, ${\rm U_{_{CM}}}$ = 200 B), мкА	I _{C. HAH}	-	70	140
Сопротивление сток-исток в открытом состоянии ($U_{3M} = 6$ В, $I_{CM} = 14$ A), мОм	R _{CM OTK}	-	94	-
Входная емкость (U $_{\rm CM}$ = 200 B, U $_{\rm 3M}$ = 0 B, f = 1 МГц), пФ	C ₁₁	-	179	-
Выходная емкость, пФ	C ₂₂	-	79	-
Проходная емкость, пФ	C ₁₂	-	3,7	-
Заряд затвора (U $_{_{\rm ЗИ}}$ = 0 до 6 В, U $_{_{\rm CИ}}$ = 50 В), нКл	Q_3	-	5,4	-
Заряд затвор – исток, нКл	Q_{3C}	-	1,3	-
Заряд затвор – сток, нКл	Q _{зи}	-	3,24	-

THГ-K 20040

GaN- силовой транзистор для работы в ключевом режиме Поставляется в металлокерамическом корпусе KT-93 или пластиковом корпусе DFN8L(8x8)

Быстрое и контролируемое время спада и нарастания Облегченные требования к затворному драйверу (от 0 В до 6 В)

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЭЛЕКТРИЧЕСКИЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ:

Параметр	Обозначение параметра	Значение
Максимально допустимое постоянное напряжение сток-исток, В	U _{CU MAKC}	200
Максимальный постоянный ток стока, А	I _{C MAKC}	40
Максимально допустимая температура перехода,°С	t _{п макс}	150
Диапазон рабочих температур, °С		от -55 до +150
Тепловое сопротивление переход-корпус транзистора*, °C/Вт	R _{T n-K}	0,5

ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ:

Параметр	Обозначение параметра	Не менее	Тип	Не более
Напряжение пробоя сток-исток (${\rm U_{3M}} = 0$ В, ${\rm I_{CM,YT}} = 35$ мкА), В	U _{CM MAKC}	200	-	-
Пороговое напряжение ($U_{\rm CM}$ = $U_{\rm 3M}$, $I_{\rm C}$ = 6 мA), В	U _{nop}	1	1,15	2,7
Ток утечки затвора ($U_{3H} = 6 \text{ B, } U_{CH} = 0 \text{ B}$), мкА	I _{3YT}	-	210	400
Начальный ток стока (U _{зи} = 6 B, U _{си} = 200 B), мкА	I _{C. HAH}	-	70	140
Сопротивление сток-исток в открытом состоянии ($U_{3M} = 6$ B, $I_{CM} = 16$ A), мОм	R _{CMOTK}	-	50	-
Входная емкость (U _{си} = 200 B, U _{зи} = 0 B, f = 1 МГц), пФ	C ₁₁	-	392	-
Выходная емкость, пФ	C ₂₂	-	166	-
Проходная емкость, пФ	C ₁₂	-	6	-
Заряд затвора (${\rm U_{_{\rm 3M}}}$ = 0 до 6 B, ${\rm U_{_{\rm CM}}}$ = 50 B), нКл	Q_3	-	10,3	-
Заряд затвор – исток, нКл	Q_{3C}	-	5,2	-
Заряд затвор – сток, нКл	Q _{3M}	-	2,9	-

*При температуре среды 25 °C

*При температуре среды 25 °C

ОБЛАСТЬ ПРИМЕНЕНИЯ:

Применяются в широком спектре изделий: в зарядных устройствах для различных гаджетов, электромобилей, в системах управления электродвигателями, системах преобразования электрической энергии для альтернативных источников (солнечные батареи, ветрогенераторы), системах питания беспроводных устройств и космических аппаратов, в робототехнике, в медицинских изделиях и многом другом.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ:

- Максимально допустимое напряжение сток-исток U_{си} = 200 В
- Максимальный постоянный ток стока I_c = 40 A
- Сопротивление сток-исток в открытом состоянии R_{сиотк} = 50 мОм

Применяются в широком спектре изделий: в зарядных устройствах для различных гаджетов, электромобилей, в системах управления электродвигателями, системах преобразования электрической энергии для альтернативных источников (солнечные батареи, ветрогенераторы), системах питания беспроводных устройств и космических аппаратов, в робототехнике, в медицинских изделиях и многом другом.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ:

- Максимально допустимое напряжение сток-исток
- $U_{CM} = 650 \text{ B}$
- Максимальный постоянный ток стока I_c = 5 A
- Сопротивление сток-исток в открытом состоянии $R_{\text{си отк}}$ = 300 мОм

THF-K 65005

GaN- силовой транзистор для работы в ключевом режиме Поставляется в металлокерамическом корпусе КТ-94 или пластиковом корпусе DFN8L(10x10)
Быстрое и контролируемое время спада и нарастания Облегченные требования к затворному драйверу (от 0 В до 6 В)

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЭЛЕКТРИЧЕСКИЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ:

Параметр	Обозначение параметра	Значение
Максимально допустимое постоянное напряжение сток-исток, В	U _{CM MAKC}	450
Максимальный постоянный ток стока, А	C MAKC	5
Максимально допустимая температура перехода,°С	t _{ri MAKC}	150
Диапазон рабочих температур, °С		от -55 до +150
Тепловое сопротивление переход-корпус транзистора*, °C/Вт	R _{T n-K}	0,5

ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ:

Параметр	Обозначение параметра	Не менее	Тип	Не более
Напряжение пробоя сток-исток (U _{зи} = 0 B, I _{си.ут} = 6,5 мкА), В	U _{CM MAKC}	650	-	-
Пороговое напряжение ($U_{CM} = U_{3M}$, $I_{C} = 1$ мА), В	U _{nop}	1	1,15	2,7
Ток утечки затвора (U_{3H} = 6 B, U_{CH} = 0 B), мкА	I _{зут}	-	20	200
Начальный ток стока (${\rm U_{_{3M}}}$ = 6 B, ${\rm U_{_{CM}}}$ = 650 B), мкА	I _{C. HAH}	-	40	140
Сопротивление сток-исток в открытом состоянии $(U_{3M} = 6 \text{ B, } I_{CM} = 1,2 \text{ A}), \text{ мОм}$	R _{CM OTK}	-	300	-
Входная емкость (U $_{\rm CM}$ = 400 B, U $_{\rm 3M}$ = 0 B, f = 1 МГц), пФ	C ₁₁	-	26	-
Выходная емкость, пФ	C ₂₂	-	7	-
Проходная емкость, пФ	C ₁₂	-	1	-
Заряд затвора (U _{зи} = 0 до 6 В, U _{си} = 50 В), нКл	Q ₃	-	0,8	-
Заряд затвор – исток, нКл	Q_{3C}	-	0,3	-
Заряд затвор – сток, нКл	Q _{зи}	-	0,3	-

THГ-K 65010

GaN- силовой транзистор для работы в ключевом режиме Поставляется в металлокерамическом корпусе KT-94 или пластиковом корпусе DFN8L(10x10)
Быстрое и контролируемое время спада и нарастания Облегченные требования к затворному драйверу (от 0 В до 6 В)

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЭЛЕКТРИЧЕСКИЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ:

Параметр	Обозначение параметра	Значение
Максимально допустимое постоянное напряжение сток-исток, В	U _{CM MAKC}	650
Максимальный постоянный ток стока, А	I _{C MAKC}	10
Максимально допустимая температура перехода,°С	t _{п макс}	150
Диапазон рабочих температур, °С		от -55 до +150
Тепловое сопротивление переход-корпус транзистора*, °С/Вт	R _{T n-K}	0,5

ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ:

Параметр	Обозначение параметра	Не менее	Тип	Не более
Напряжение пробоя сток-исток (${\rm U_{3M}} = 0$ В, ${\rm I_{CM,YT}} = 14$ мкА), В	U _{CM MAKC}	650	-	-
Пороговое напряжение ($U_{\rm CM}$ = $U_{\rm 3M}$, $I_{\rm C}$ = 2,4 мA), В	U _{nop}	1	1,5	2,7
Ток утечки затвора (U_{3H} = 6 B, U_{CH} = 0 B), мкА	I _{3yT}	-	30	210
Начальный ток стока ($U_{_{\rm 3M}}$ = 6 B, $U_{_{\rm CM}}$ = 650 B), мкА	I _{C. HAH}	-	57	170
Сопротивление сток-исток в открытом состоянии $(U_{3M} = 6 \text{ B, } I_{CM} = 3,2 \text{ A}), \text{ мОм}$	R _{CMOTK}	-	100	-
Входная емкость ($U_{CM} = 400 \text{ B}, U_{3M} = 0$ В, $f = 1 \text{ МГц}$), пФ	C ₁₁	-	70	-
Выходная емкость, пФ	C ₂₂	-	20	-
Проходная емкость, пФ	C ₁₂	-	2	-
Заряд затвора (U $_{_{\rm SM}}$ = 0 до 6 B, U $_{_{\rm CM}}$ = 400 B), нКл	Q_3	-	2,2	-
Заряд затвор – исток	Q_{3C}	-	0,8	-
Заряд затвор – сток	Q _{3M}	-	0,8	-

*При температуре среды 25 °С

*При температуре среды 25 °C

ОБЛАСТЬ ПРИМЕНЕНИЯ:

Применяются в широком спектре изделий: в зарядных устройствах для различных гаджетов, электромобилей, в системах управления электродвигателями, системах преобразования электрической энергии для альтернативных источников (солнечные батареи, ветрогенераторы), системах питания беспроводных устройств и космических аппаратов, в робототехнике, в медицинских изделиях и многом другом.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ:

- Максимально допустимое напряжение сток-исток U_{си} = 650 В
- Максимальный постоянный ток стока I_c = 10 A
- Сопротивление сток-исток в открытом состоянии R_{си отк} = 100 мОм

Применяются в широком спектре изделий: в зарядных устройствах для различных гаджетов, электромобилей, в системах управления электродвигателями, системах преобразования электрической энергии для альтернативных источников (солнечные батареи, ветрогенераторы), системах питания беспроводных устройств и космических аппаратов, в робототехнике, в медицинских изделиях и многом другом.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ:

- Максимально допустимое напряжение сток-исток $\rm U_{cu}$ = 650 B
- Максимальный постоянный ток стока I_c = 20 A
- Сопротивление сток-исток в открытом состоянии R_{сиотк} = 70 мОм

THГ-K 65020

GaN- силовой транзистор для работы в ключевом режиме Поставляется в металлокерамическом корпусе КТ-94 или пластиковом корпусе DFN8L(10x10) Быстрое и контролируемое время спада и нарастания. Облегченные требования к затворному драйверу (от 0 В до 6 В)

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЭЛЕКТРИЧЕСКИЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ:

нение
50
20
50
55 до 150
1,5

ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ:

Параметр	Обозначение параметра	Не менее	Тип	Не более
Напряжение пробоя сток-исток (U _{зи} = 0 B, I _{силт} = 35 мкА), В	U _{CM MAKC}	650	-	-
Пороговое напряжение ($U_{CM} = U_{3M}$, IC = 4,8 мA), В	U _{nop}	1	1,15	2,7
Ток утечки затвора (U_{3H} = 6 B, U_{CH} = 0 B), мкА	I _{зут}	-	60	120
Начальный ток стока (${\rm U_{_{3N}}}$ = 6 B, ${\rm U_{_{CN}}}$ = 650 B), мкА	I _{C. HAH}	-	40	250
Сопротивление сток-исток в открытом состоянии ($U_{3M} = 6$ В, $I_{CM} = 6$ А), мОм	R _{CM OTK}	-	70	-
Входная емкость (U $_{\rm CM}$ = 400 B, U $_{\rm 3M}$ = 0 B, f = 1 МГц), пФ	C ₁₁	-	195,8	-
Выходная емкость, пФ	C ₂₂	-	55	-
Проходная емкость, пФ	C ₁₂	-	2,8	-
Заряд затвора (U3И = 0 до 6 В, UСИ = 400 В), нКл	Q_3	-	6,9	-
Заряд затвор – исток	Q_{3C}	-	3,4	-
Заряд затвор – сток	Q _{3И}	-	2	-

THF-K 65030

GaN- силовой транзистор для работы в ключевом режиме Поставляется в металлокерамическом корпусе KT-94 или пластиковом корпусе DFN8L(10x10)
Быстрое и контролируемое время спада и нарастания Облегченные требования к затворному драйверу (от 0 В до 6 В)

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЭЛЕКТРИЧЕСКИЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ:

Параметр	Обозначение параметра	Значение
Максимально допустимое постоянное напряжение сток-исток, В	U _{CM MAKC}	650
Максимальный постоянный ток стока, А	I _{C MAKC}	30
Максимально допустимая температура перехода,°С	t _{п макс}	150
Диапазон рабочих температур, °С		от -55 до +150
Тепловое сопротивление переход-корпус транзистора*, °С/Вт	R _{T n-K}	0,5

ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ:

Параметр	Обозначение параметра	Не менее	Тип	Не более
Напряжение пробоя сток-исток $(U_{3M} = 0 \text{ B, } I_{CM,YT} = 50 \text{ мкA}), \text{ B}$	U _{CM MAKC}	650	-	-
Пороговое напряжение ($U_{CM} = U_{3M}$, $I_{C} = 7$ мА), В	U _{nop}	1	1,5	2,7
Ток утечки затвора (U $_{\rm 3M}$ = 6 B, U $_{\rm CM}$ = 0 B), мкА	I _{3VT}	-	120	400
Начальный ток стока (U $_{_{\rm 3M}}$ = 6 B, U $_{_{\rm CM}}$ = 650 B), мкА	I _{C. HAH}	-	10	150
Сопротивление сток-исток в открытом состоянии ($U_{34} = 6 \text{ B, } I_{CH} = 9 \text{ A), мОм}$	R _{CMOTK}	-	50	-
Входная емкость (U $_{\text{CM}}$ = 400 B, U $_{\text{3M}}$ = 0 B, f = 1 МГц), пФ	C ₁₁	-	421,5	-
Выходная емкость, пФ	C ₂₂	-	107	-
Проходная емкость, пФ	C ₁₂	-	2,4	-
Заряд затвора (U $_{\rm 3M}$ = 0 до 6 B, U $_{\rm CM}$ = 400 B), нКл	Q_3	-	12	-
Заряд затвор – исток	Q_{3C}	-	6,2	-
Заряд затвор – сток	Q _{3M}	-	2,7	-

ОБЛАСТЬ ПРИМЕНЕНИЯ:

Применяются в широком спектре изделий: в зарядных устройствах для различных гаджетов, электромобилей, в системах управления электродвигателями, системах преобразования электрической энергии для альтернативных источников (солнечные батареи, ветрогенераторы), системах питания беспроводных устройств и космических аппаратов, в робототехнике, в медицинских изделиях и многом другом.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ:

- Максимально допустимое напряжение сток-исток U_{си} = 650 B
- Максимальный постоянный ток стока I_c = 30 A
- Сопротивление сток-исток в открытом состоянии R_{си отк} = 50 мОм

Применяются в широком спектре изделий, в зарядных устройствах для различных гаджетов, электромобилей, в системах управления электродвигателями, системах преобразования электрической энергии для альтернативных источников (солнечные батареи, ветрогенераторы), системах питания беспроводных устройств и космических аппаратов, в робототехнике, в медицинских изделиях и многом другом.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ:

Основные характеристики:

•Максимально допустимое напряжение сток-исток

 $U_{CM} = 650 \, B$

- Максимальный постоянный ток стока $I_c = 50 \text{ A}$
- Сопротивление сток-исток в открытом состоянии $R_{\text{си отк}} = 30 \text{ мОм}$

СИЛОВЫЕ GAN-ТРАНЗИСТОРЫ

THF-K 65050

GaN- силовой транзистор для работы в ключевом режиме Поставляется в металлокерамическом корпусе KT-95 или пластиковом корпусе DFN8L(10x10)

Быстрое и контролируемое время спада и нарастания Облегченные требования к затворному драйверу (от 0 В до 6 В)

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЭЛЕКТРИЧЕСКИЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ:

Параметр	Обозначение параметра	Значение
Максимально допустимое постоянное напряжение сток-исток, В	U _{CM MAKC}	650
Максимальный постоянный ток стока, А	C MAKC	50
Максимально допустимая температура перехода,°С	t _{n make}	150
Диапазон рабочих температур, °С		от -55 до +150
Тепловое сопротивление переход-корпус транзистора*, °C/Вт	$R_{\text{T II-K}}$	0,5

ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ:

Параметр	Обозначение параметра	Не менее	Тип	Не более
Напряжение пробоя сток-исток ($U_{3M} = 0$ В, $I_{CM,YT} = 35$ мкА), В	U _{CM MAKC}	650	-	-
Пороговое напряжение ($U_{CH} = U_{3M}$, $I_{C} = 12$ мА), В	U _{nop}	1	1,15	2,7
Ток утечки затвора (U_{3H} = 6 B, U_{CH} = 0 B), мкА	I _{3VT}	-	180	500
Начальный ток стока (${\rm U_{_{3M}}}$ = 6 B, ${\rm U_{_{CM}}}$ = 650 B), мкА	I _{C. HAЧ}	-	200	800
Сопротивление сток-исток в открытом состоянии ($U_{3M} = 6$ В, $I_{CM} = 16$ А), мОм	R _{CM отк}	-	30	-
Входная емкость (U $_{\rm CM}$ = 400 B, U $_{\rm 3M}$ = 0 B, f = 1 МГц), пФ	C ₁₁	-	518	-
Выходная емкость, пФ	C ₂₂	-	126	-
Проходная емкость, пФ	C ₁₂	-	8	-
Заряд затвора (U _{зи} = 0 до 6 В, U _{си} = 400 В), нКл	Q_3	-	14,2	-
Заряд затвор – исток	Q_{3C}	-	5,4	-
Заряд затвор – сток	Q _{зи}	-	9	-

*При температуре среды 25 °С

