ERRATA К1921ВГ015 (Образцы Rev.4 в корпусе LQFP100) Версия от 07.02.2025

1. Регистр RTC_REG[14] содержит некорректные значения

Описание

Регистр RTC_REG[14] содержит результат «логического ИЛИ» значений регистров RTC_REG[12] и RTC_REG[14].

Условия

Всегда.

Последствия

При чтении регистра RTC_REG[14] возвращается результат «логического ИЛИ» значений регистров RTC REG[12] и RTC REG[14].

Рекомендации и способы обхода

Не использовать регистр RTC REG[14].

2. Смещение нуля каналов ADC_CH1 - ADC_CH7 АЦП последовательного приближения

Описание

На каналах ADC_CH1 - ADC_CH7 ADCSAR наблюдается смещение нуля (шкалы) до (100 - 150) мВ.

Условия

Иногда.

Последствия

При аналого-цифровом преобразовании получается результат со смещением нуля.

Рекомендации и способы обхода

Возможно добиться результата АЦП без смещения нуля увеличив время подключения входа к зарядной емкости АЦП с помощью регистра CH DELAY[].

3. Отсутствие внутреннего pullup резистора USB по линии D+

Описание

Внутри блока USB микроконтроллера pullup резистор по линии D+ не реализован. При использовании внешнего pullup резистора номиналом 1,5 кОм (согласно стандарту USB) НОST может некорректно воспринимать окончание посылки.

Условия

Всегда.

Последствия

HOST может некорректно воспринимать окончание посылки.

Рекомендации и способы обхода

Использовать внешний pullup резистор по линии D+ номиналом (510 – 750) Ом.

4. Особенности функционирования USB

Описание

После подключения интерфейса USB к хосту энумерация устройства проходит корректно, обмен через контрольную точку также проходит корректно. При этом можно работать только с одной конечной точкой, но при этом наблюдается нестабильность в работе конечной точки.

Условия

Всегда.

Последствия

Можно работать только с одной конечной точкой, но при этом наблюдается нестабильность в работе конечной точки.

Рекомендации и способы обхода

Возможна коррекция в следующей ревизии микроконтроллера.

5. Ошибочный результат команды деления блока FPU

Описание

При использовании команды деления блока FPU (fdiv.s) и команды вычисления квадратного корня (fsqrt.s) в случае, когда один или два операнда команды размещены во FLASH возвращается некорректный результат.

Условия

Один или два операнда команды fdiv.s или fsqrt.s размещены во FLASH.

Последствия

Возвращается некорректный результат деления или вычисления квадратного корня.

Рекомендации и способы обхода

При использовании транслятора Ассемблер: перед командой fdiv.s или fsqrt.s добавить команду пор.

При использовании компилятора Си: не использовать в качестве операндов операции деления или вычисления квадратного корня чисел с плавающей запятой константы, расположенные во FLASH. При необходимости использования констант — предварительно записывать их значения в переменные.

6. Особенности функционирования AntiTamper

Описание

После перехода микроконтроллера в режим STOP или POWEROFF невозможно возобновить работу микроконтроллера по событиям AntiTamper.

Условия

Часто

Последствия

По событиям AntiTamper микроконтроллер не переходит в режим RUN.

Рекомендации и способы обхода

Для восстановления функционала пробуждения микроконтроллера по событиям AntiTamper необходимо к выводу AT_OUT подключить PullUp резистор номиналом 24 кОм. Второй вывод резистора подключить к источнику напряжения (2,2-3,3) В. Подключение PullUp резистора увеличивает ток потребления на 84мкА (при подключении резистора 24кОм к источнику +3,3В).