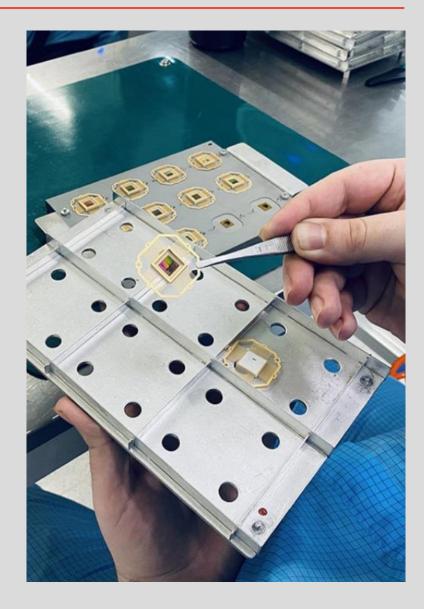


НАУЧНО-ТЕХНИЧЕСКАЯ КОНФЕРЕНЦИЯ ПО ПРОДУКЦИИ АО «НИИЭТ»



О КОМПАНИИ

АО «НИИЭТ» (входит в ГК «Элемент») специализируется на разработке и производстве сложных изделий микроэлектроники: микроконтроллеров, микропроцессоров, цифро-аналоговых и аналого-цифровых преобразователей, интерфейсных интегральных микросхем, СВЧ-транзисторов и модулей усиления мощности СВЧ-диапазона, разработке и изготовлении измерительных стендов.

Ключевые факты о компании

- Свыше 300 созданных типономиналов микросхем и транзисторов.
- Свыше 150 выполненных НИОКР.
- Серийные изделия, разработанные в рамках субсидии ПП 1252:
- 32-разрядный ультранизкопотребляющий микроконтроллер К1921ВГ015
- CBY LDMOS-транзисторы для передатчиков цифрового эфирного телевещания, КП9171A и КП9171БС.
- Первые в России разработали изделия на основе нитрида галлия.
- Максимальная производственная мощность 300 тыс. изделий в год в металлокерамике и до 10 млн. изделий в год в металлополимерных корпусах.
- Испытательное оборудование, разработанное в рамках субсидии ПП 2136:
- Автоматическая камера теплового удара АКТУ-001.
- Стенды испытаний ЭКБ на надежность.
- Наличие современного парка технологического оборудования.
- Наличие чистых помещений (класс ISO 7) общей площадью более 1000 кв.м.
- Фаундри-услуги по сборке изделий ИМС и СВЧ-электроники.

ДИЗАЙН-ЦЕНТРЫ АО «НИИЭТ»

Дизайн-центр проектирования интегральных микросхем

Основные направления дизайн-центра интегральных схем:

- Процессоры ЦОС (DSP) и микропроцессоры
- Микроконтроллеры
- АЦП, ЦАП, интерфейсные и силовые ИМС
- Микросборки («системы в корпусе»)

Дизайн-центр проектирования твердотельной электроники полупроводниковых приборов и РЭА

Основные направления дизайн-центра полупроводниковой ЭКБ:

- Мощные СВЧ-транзисторы
- Усилительные ВЧ-, СВЧ-модули
- Интегральные схемы СВЧ
- Силовые переключающие транзисторы

Дизайн-центр проектирования радиоэлектронной аппаратуры

Основные направления дизайн-центра:

- Разработка макетно-отладочных плат (комплектов)
- Разработка РЭА с применением продукции АО «НИИЭТ»

Лаборатория разработки, изготовления и сервисного обслуживания оборудования и оснастки

Основные направления лаборатории:

- Разработка и изготовление испытательного оборудования и оснастки в составе аккредитованного испытательного стенда
- Оказание услуг по проведению испытаний необходимой ЭКБ по ТЗ Заказчика

НАПРАВЛЕНИЯ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ

Существующие направления ИС АО «НИИЭТ»

Процессоры ЦОС (DSP) и микропроцессоры

- 16-разрядные с фиксированной точкой, в том числе радиационно-стойкие (1867ВЦ2Т, 1867ВЦ5Т)
- 32-разрядные с плавающей точкой, в том числе радиационно-стойкие (1867ВЦ6Ф)
- «Системы-на-кристалле» (SoC) на базе 32-разрядных многоядерных процессоров ЦОС (1867ВЦ8Ф1)
- Радиационно-стойкие 32разрядные на базе архитектуры SPARC v8e и RISC-V (1906BM01A6)

Микроконтроллеры

- 8-, 16- и 32-разрядные микроконтроллеры, в том числе радиационно-стойкие
- В данном классе представлены специализированные изделия типа motor control
- 8-разрядные: **1882BM1T**, **K1946BM014**, **1887BE4У**, **1887BE7T**
- 16-разрядные: 1874ВЕ7Т, 1874ВЕ71Т, 1874ВЕ10АТ
- 32-разрядные: К1921ВГ015, К1946ВК035, 1921ВК035, 1921ВК028, К1921ВГ3Т, К1921ВГ5Т, К1921ВГ1Т, К1921ВГ7Т

АЦП, ЦАП, интерфейсные и силовые ИМС

 Прецизионные сигма-дельта АЦП (1273ПВ19Т)

ЦАП:

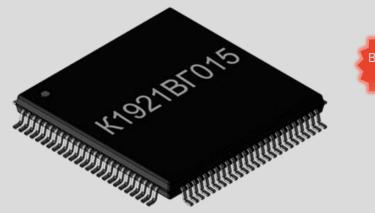
- прецизионные
- умножающие
- быстродействующие
- сигма-дельта (1273ПА5У, 1273ПА6У, 1273ПА4Т, 1273ПА7Т, 1273ПА13Т)

Интерфейсные ИМС

- аудио-кодеки
- приемо-передатчики LVDS (1273ПП1Т)
- Асинхронные DC/DC преобразователи (1273ПН1БТ1, 1273ПН1Т1)
- ШИМ-контроллеры
- (серия 1396ЕУххх)

Микросборки («системы в корпусе»)

• «Системы в корпусе» (SiP) на базе 32-разрядных процессоров ЦОС (1867ВНО16)


СЕРИЙНО ПОСТАВЛЯЕМЫЕ ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ АО «НИИЭТ» ДЛЯ ГРАЖДАНСКОГО ПРИМЕНЕНИЯ

32-РАЗРЯДНЫЙ МИКРОКОНТРОЛЛЕР С УЛЬТРАНИЗКИМ ПОТРЕБЛЕНИЕМ К1921ВГ015

Отличительные особенности:

- Внутренняя энергонезависимая память
- Многоканальный АЦП
- Криптографический сопроцессор
- Последовательные интерфейсы
- Система защиты от несанкционированного доступа
- Низкий ток потребления в активном режиме

Включен в Реестр российской промышленной продукции

Микросхемы К1921ВГ015 поставляются серийно

Краткое описание микроконтроллера:

Микроконтроллер проектируется на основе архитектуры RISC-V.

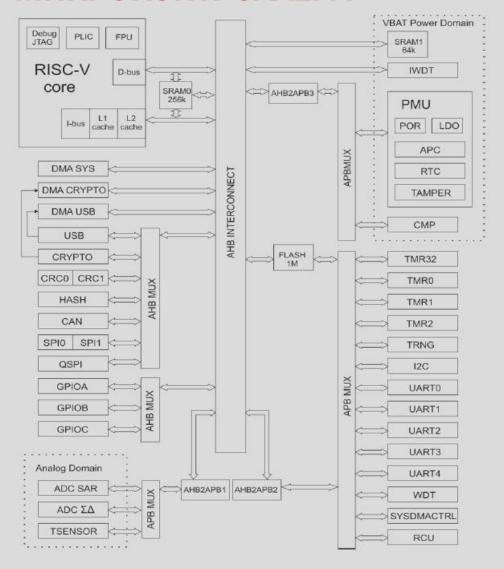
Содержит широкий набор функциональных устройств, ток потребления составляет не более 200 мкА/МГц.

Область потенциального применения микроконтроллера:

приборы учета электроэнергии и энергоносителей, автомобилестроение, медицинское оборудование, промышленные датчики и контроллеры, устройства домашней автоматизации, смарт-счетчики и т.д.

K1921BF015

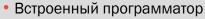
является функциональным аналогом серий STM32L0, STM32L1, STM32L4, STM32L5, STM32U0 ф. ST Microelectronics и микроконтроллеров серии MSP430 ф. Texas Instruments.



СТРУКТУРНАЯ СХЕМА И СОСТАВ МИКРОКОНТРОЛЛЕРА

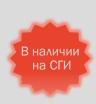
Состав:

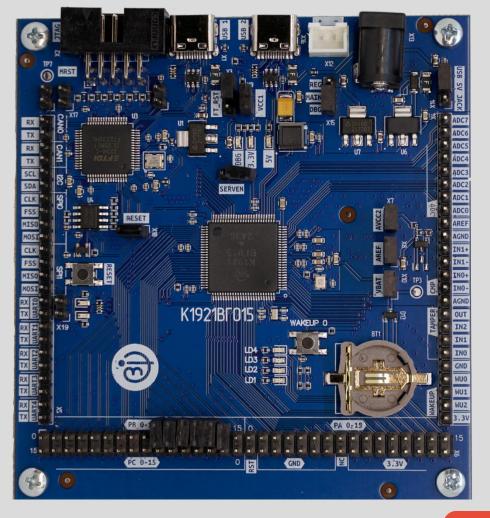
- 32-разрядное ядро архитектуры RISC-V с поддержкой системы команд RV32IMFCN_ZBA_ZBB_ZBC_ZBS, набора команд умножения, арифметических и логических команд, встроенным модулем обработки команд с плавающей запятой с одинарной точностью FPU, кэшем команд и поддержкой отладочного интерфейса JTAG;
- основная Flash-память объемом 1 Мбайт;
- SRAMO (ОЗУО) объемом 256 Кбайт;
- SRAM1 (ОЗУ1), подключенное к домену батарейного питания, объемом 64 Кбайт;
- блок управления сбросом и синхронизацией RCU, имеющий в своем составе RC генератор (1 МГц), синтезатор частоты SYSPLL и блок управления системными тактовыми сигналами SCM;
- системный блок управления энергопотреблением PMUSYS;
- блок управления энергопотреблением в составе с RTC модулем (PMURTC);
- блок коммутации AXI AHB;
- 24-канальный контроллер прямого доступа к памяти DMA;
- блок часов реального времени RTC со входами контроля целостности;
- датчик температуры TSENSOR;
- сторожевой таймер WDT;
- независимый сторожевой таймер IWDT;
- один 8-канальный 12-разрядный быстродействующий АЦП с режимами цифрового компаратора для каждого из каналов (ADCSAR);
- один 8-канальный 16-разрядный сигма-дельта АЦП (ADCSD);
- три 16-разрядных порта вводы-вывода А, В, С;
- восемь аналоговых входов, подключенных к каналам АЦП (ADCSD и ADCSAR);
- один 32-разрядный таймер TMR32;
- три 16-разрядных таймеров TMRO-TMR2;
- пять приемопередатчиков UARTO-UART4;
- блок криптографии CRYPTO;
- два блока вычисления CRC (CRCO, CRC1);
- генератор случайных чисел (TRNG);
- HASH процессор;
- контроллеры интерфейсов;
- CAN 2.0b;
- USB 2.0 FullSpeed (Device);
- один контроллер I2C;
- один контроллер QSPI, два контроллера SPI (SPIO-SPI1).



МАКЕТНО-ОТЛАДОЧНАЯ ПЛАТА (МОП) ДЛЯ К1921ВГ015 КФДЛ.441461.029

Основные характеристики

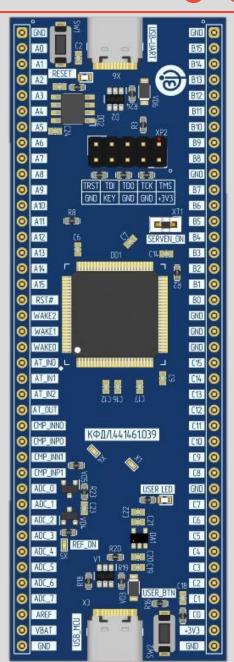

Выбор источника питания:


- от внешнего источника +12 В
- от аккумулятора
- от USB для передачи данных
- от USB для отладки

- Сервисный сброс
- Батарейный отсек
- Габаритные размеры: 90 х 96 х 15 мм

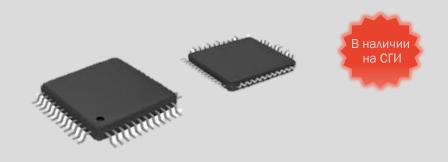
УПРОЩЕННАЯ МОП ДЛЯ К1921ВГ015 КФДЛ.441461.039

Основные характеристики:


- Нет встроенного программатора
- Питание от USB
- Габаритные размеры: 104 х 35 х 21 мм

БУДЕТ ДОСТУПНА НА В СЕНТЯБРЕ 2025 Г.

Полностью открытый проект в CAПР Altium Designer доступен в Gitflic



Микросхемы К1946ВК035 поставляются серийно

Краткое описание микроконтроллера:

Малогабаритный 32-разрядный микроконтроллер с периферией, специализированной под задачи управления электродвигателями. Тактовая частота – 100 МГц, ADC, PWM, поддержка интерфейсов CAN, UART, SPI, I2C.

Отличительные особенности:

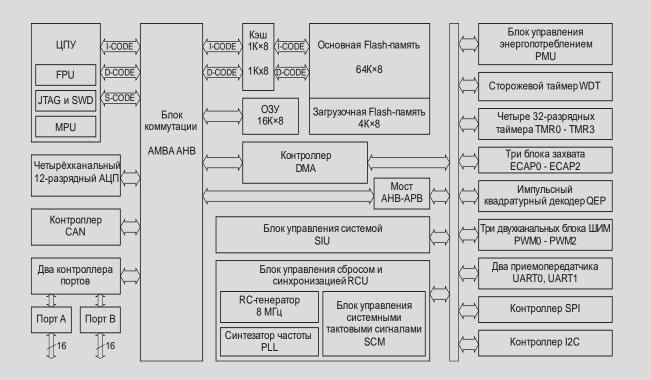
- Процессорное ядро с производительностью 125 DMIPS
- Четырехканальный 12-разрядный АЦП
- Один порт последовательного интерфейса SPI
- Три модуля ШИМ
- Система отладки с интерфейсами JTAG и SWD
- Четыре 32-разрядных таймера
- Модуль CAN с двумя портами ввода-вывода

Включен в Реестр российской промышленной продукции

Область потенциального применения микроконтроллера:

интеллектуальное управление электроприводом и различными системами управления, источники электропитания, АСУ ТП, сеть интеллектуальных датчиков, медицина, энергетика, промышленность, средства измерения, связь, наблюдение, безопасность, авиация, робототехнические комплексы.

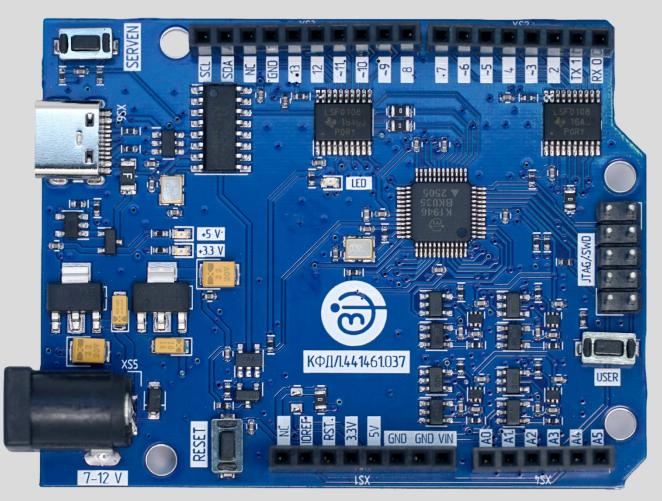
32-разрядный микроконтроллер К1946ВК035 (Функциональный аналог STM32F301x6 ф. STMicroelectronics)



СТРУКТУРНАЯ СХЕМА И СОСТАВ МИКРОКОНТРОЛЛЕРА К1946ВК035

Состав:

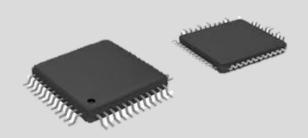
- 32-разрядное ЦПУ с поддержкой набора одноцикловых команд умножения с накоплением, команд централизованного управления потоком данных, арифметических и логических команд, встроенным модулем обработки команд с плавающей запятой с одинарной точностью FPU, поддержкой отладочных интерфейсов JTAG и SWD и модулем защиты памяти MPU;
- блок управления сбросом и синхронизацией RCU, имеющий в своем составе RC-генератор (8 Гц), синтезатор частоты PLL и блок управления системными тактовыми сигналами SCM;
- блок управления системой SIU;
- блок коммутации АМВА АНВ;
- основная Flash-память объемом 64 Кбайт;
- загрузочная Flash-память емкостью 4 Кбайт;
- кэш команд и данных объемом 1 Кбайт каждый;
- ОЗУ объемом 16 Кбайт:
- 16-канальный контроллер прямого доступа к памяти DMA;
- блок управления энергопотреблением PMU, позволяющий переводить системные блоки в режим Powerdown;
- два контроллера портов А и В, управляющих 16-разрядными портами вводавывода;
- четырехканальный 12-разрядный АЦП с режимами цифрового компаратора для каждого из каналов (равно или больше, равно или меньше, попадание в диапазон, выход из диапазона) и функцией автоматического запуска модулей ШИМ по событию «окончание преобразования»;
- три двухканальных блока ШИМ PWM0 PWM2;
- импульсный квадратурный декодер QEP для обработки сигналов датчиков положения ротора, позволяющий определить положение, направление и скорость вращения;
- три блока захвата ЕСАРО ЕСАР2;
- четыре 32-разрядных таймера TMR0 TMR3;
- сторожевой таймер WDT;
- два приемопередатчика UARTO, UART1;
- контроллер CAN (протокол 2.0b);
- контроллер I2C;
- контроллер SPI.


МОП ДЛЯ К1946ВКО35 КФДЛ.441461.037

Основные характеристики

Аналог Arduino UNO

- Питание платы:
- or USB
- от внешнего источника питания постоянного тока 7-12 В, не менее 0,5 А
- Программирование:
- or USB
- от разъема JTAG/SWD



8-РАЗРЯДНЫЙ МИКРОКОНТРОЛЛЕР К1946ВМ014

Открыт прием заказов на серийно выпускаемые микросхемы K1946BM014

Отличительные особенности:

- Внутренняя энергонезависимая память
- Многоканальный АЦП
- Последовательные интерфейсы
- Расширенные режимы пониженного энергопотребления
- Возможность работы с ШИМ-сигналом
- Расширенный диапазон питающих напряжений

Включен в Реестр российской промышленной продукции

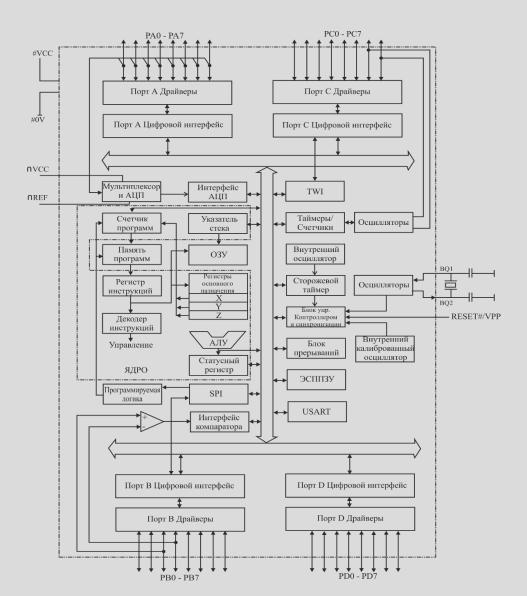
Краткое описание микроконтроллера:

универсальный 8-разрядный RISC-микроконтроллер с энергонезависимой памятью 8 Кбайт. Тактовая частота – до 16 МГц, ADC, PWM, поддержка интерфейсов UART, SPI, TWI.

Область потенциального применения микроконтроллера:

робототехнические комплексы, автоматизация технологических процессов, автоматизированное управление электроприводом, оргтехника, вычислительная техника, телекоммуникационная техника, портативная носимая аппаратура.

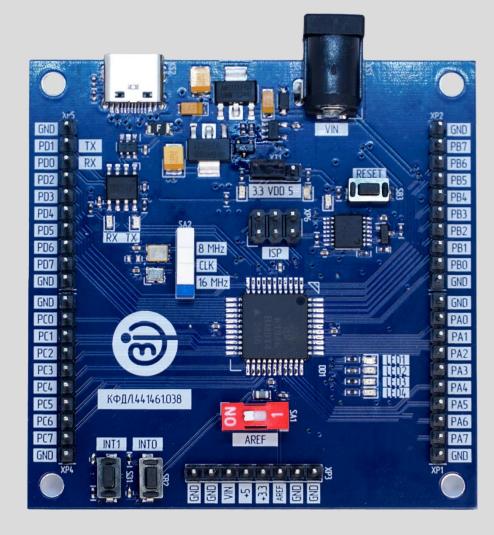
К1946ВМ014 является функциональным аналогом ATMEGA8535-16PI ф. Atmel



СТРУКТУРНАЯ СХЕМА И СОСТАВ МИКРОКОНТРОЛЛЕРА

Состав:

- быстродействующая архитектура типа «регистр-регистр»;
- регистровое ОЗУ емкостью до 512 байт;
- последовательный периферийный интерфейс SPI;
- последовательный синхронно-асинхронный приемопередатчик USART;
- двухпроводной последовательный интерфейс TWI;
- 16-разрядный таймер/счетчик;
- два 8-разрядных таймера/счетчика;
- 8-разрядный сторожевой таймер;
- 8-канальный 10-разрядный аналого-цифровой преобразователь;
- аналоговый компаратор;
- 4-канальный ШИМ;
- четыре 8-разрядных порта ввода-вывода;
- режимы холостого хода IDLE и хранения POWERDOWN.

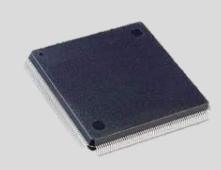

МОП ДЛЯ К1946ВМ014 КФДЛ.441461.038

Основные характеристики

Питание платы:

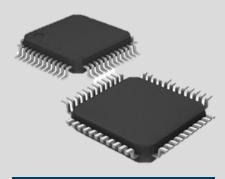
- ot USB
- от внешнего источника питания постоянного тока 7-12 В, не менее 0,5 А
- Количество цифровых линий I/O 32 шт.
- Интерфейс программирования ISP.
- Пользовательская кнопка 2 шт.
- Габаритные размеры: 73 × 67 × 15 мм.

ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ АО «НИИЭТ» В РАЗРАБОТКЕ, ЗАПУСК В СЕРИЮ В 2026 Г.



32-РАЗРЯДНЫЕ МИКРОКОНТРОЛЛЕРЫ В РАЗРАБОТКЕ

Корпус LQFP-208


K1921BГ3T

(Функциональный аналог STM32F378xx ф. STMicroelectronics, EFM32GG12 ф. Silicon Labs, ATSAM4E16CB ф. Atmel)

Микроконтроллер представляет собой систему на кристалле, содержащую универсальное 32-разрядное процессорное ядро архитектуры RISC-V, встроенную энергонезависимую память объемом 1 Мбайт с ЕСС, широкий набор универсальных и специализированных под задачи управления двигателями блоков и интерфейсов.

Сферы применения:

 Универсальный энергоэффективный 32-разрядный микроконтроллер с функциями управления двигателями С_{рок включения} в ЕРРРП – 2026г.

Корпус LQFP-48

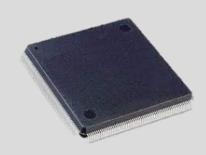
K1921BF5T

(Функциональный аналог MK02FN128VLH10 ф. NXP Semiconductors, STM32F334 ф. STMicroelectronics, K20P48M50SF0 ф. NXP Semiconductors)

Микроконтроллер представляет собой систему на кристалле, содержащую универсальное 32-разрядное процессорное ядро архитектуры RISC-V, встроенную энергонезависимую память объемом 512 Кбайт, набор универсальных и специализированных блоков и интерфейсов.

Сферы применения:

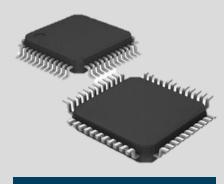
 Универсальный энергоэффективный 32-разрядный микроконтроллер для портативных систем Срок включения в ЕРРРП – 2026г.



32-РАЗРЯДНЫЕ МИКРОКОНТРОЛЛЕРЫ В РАЗРАБОТКЕ

Корпус LQFP-208

K1921BF1T


(Функциональный аналог STM32H745IG ф. STMicroelectronics, SAM4CM ф. Microchip, CY8C62x4 ф. Cypress)

Микронтроллер представляет собой систему на кристалле, содержащую два универсальных 32-разрядных процессорных ядра архитектуры RISC-V, встроенную энергонезависимую память объемом 4096 Кбайт с ЕСС, широкий набор универсальных и специализированных устройств и периферийных интерфейсов.

Двухъядерный 32-разрядный микроконтроллер для АСУ ТП

Корпус LQFP-48

K1921BF7T

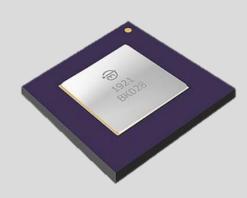
(Функциональный аналог STM32L433xx ф. STMicroelectronics, ATSAM4S4AA ф. Microchip, EFM32PG1, ф. Silicon Labs)

Микроконтроллер представляет собой систему на кристалле, содержащую универсальное 32-разрядное процессорное ядро архитектуры RISC-V, встроенную энергонезависимую память объемом 512 Кбайт, набор универсальных и специализированных под задачи управления двигателями блоков и интерфейсов.

Сферы применения:

Универсальный энергоэффективный 32-разрядный микроконтроллер для IoT и устройств сенсорики

Срок _{ВКЛЮЧ}ения В ЕРРРП _– 2026г.


СЕРИЙНО ПОСТАВЛЯЕМЫЕ МИКРОСХЕМЫ КАТЕГОРИИ КАЧЕСТВА «ВП»

32-РАЗРЯДНЫЙ МИКРОКОНТРОЛЛЕР 1921ВК028

Корпус BGA-400

1921BK028

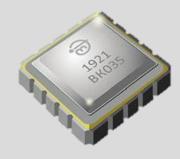
Функциональный аналог LM4F132 семейства Stellaris (Texas Instruments)

32-разрядный высокопроизводительный микроконтроллер с расширенными функциями по управлению электроприводом построен на базе процессорного ядра с производительностью 250 DMIPS и поддержкой операций с плавающей запятой, с 2 Мбайт Flash-памятью, 704 Кбайт встроенного ОЗУ, поддержкой интерфейсов ГОСТ Р 52070-2003, SpaceWire, Ethernet 10/100, CAN, UART, SPI, I2C. В своем составе имеет блок конфигурируемых логических элементов.

Примечание: Также данный микроконтроллер выпускается в 144-выводном корпусе под шифром **1921ВКО24.**

Сферы применения

Средства измерения, связи, наблюдения, безопасности, автоматизации производства, в медицине, энергетике, промышленности, в том числе в электроприводах, а также различных системах управления.



32-РАЗРЯДНЫЙ МАЛОГАБАРИТНЫЙ МИКРОКОНТРОЛЛЕР 1921ВК035

Корпус QLCC-48

1921BK035

Функциональный аналог LM4F132 семейства Stellaris (Texas Instruments)

32-разрядный самый малогабаритный в России микроконтроллер в корпусе типа QLCC (48-выводов), способный решать задачи управления злектроприводами, построен на базе процессорного ядра с производительностью 125 DMIPS с поддержкой операций с плавающей запятой, с 64 Кбайт Flash-памятью, 16 Кбайт встроенного ОЗУ, поддержкой интерфейсов CAN, UART, SPI. Работает от одного источника питания напряжением 3,3B, имеет режим тактирования от внутреннего генератора.

Сферы применения

Средства измерения, связи, наблюдения, безопасности, автоматизации производства, в медицине, энергетике, промышленности, в том числе в электроприводах, а также различных системах управления.

ПРОЦЕССОРЫ ЦОС (DSP) И МИКРОПРОЦЕССОРЫ: 16-РАЗРЯДНЫЕ С ФИКСИРОВАННОЙ ТОЧКОЙ, В ТОМ ЧИСЛЕ РАДИАЦИОННО-СТОЙКИЕ

Металлокерамический корпус типа 4229.132-3

Тип корпуса — 4229.132-3

1867ВЦ2АТ

Функциональный аналог отсутствует

Представитель пятого поколения семейства DSP. За счет модифицированной гарвардской архитектуры с дополнительными внутрикристальными периферийными устройствами, большим объемом внутрикристальной памяти и более высокой специализации системы команд создает основу операционной гибкости и производительности

1867ВЦ5Т

Функциональный аналог TMS320F240 ф. Texas Instruments

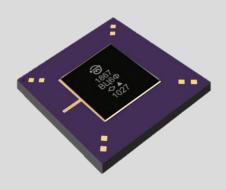
16-разрядный процессор обработки сигналов с фиксированной запятой и памятью типа Flash имеет систему команд и систему адресации, ориентированную на цифровую обработку сигналов

Сферы применения

Радиоэлектронная отрасль, быстродействующие системы обработки цифровых сигналов.

Сферы применения

Системы с набором периферийных устройств, адаптированные для управления электродвигателями.



ПРОЦЕССОРЫ ЦОС (DSP) И МИКРОПРОЦЕССОРЫ: 32-РАЗРЯДНЫЙ ПРОЦЕССОР С ПЛАВАЮЩЕЙ ТОЧКОЙ

1867ВЦ6Ф

Функциональный аналог TMS320C30 ф. Texas Instruments

Представляет собой цифровой сигнальный процессор, предназначенный для решения сложных задач системного уровня, для которых нужно значительное увеличение динамического диапазона, высокая производительность и возможность обработки данных в формате как с фиксированной, так и с плавающей запятой.

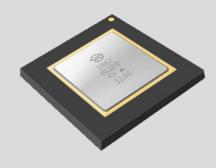
Отличительные особенности:

- Разрядность АЛУ 40 бит (ПЗ), 32 бита (ФЗ)
- Аппаратный умножитель 32х32 бит (ПЗ), 24х24 бит (ФЗ)
- Два 32-разрядных таймера
- Встроенный контроллер прямого доступа к памяти (ПДП)
- Два последовательных порта
- Мультипроцессорный интерфейс

Сферы применения

Быстродействующие системы обработки цифровых сигналов, системы с динамическим масштабированием вычислительных ядер.

Тип корпуса — 6116.180-A (PGA-181)



«СИСТЕМА-НА-КРИСТАЛЛЕ» (SOC) НА БАЗЕ 32-РАЗРЯДНЫХ МНОГОЯДЕРНЫХ ПРОЦЕССОРОВ ЦОС

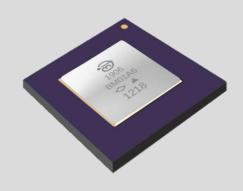
Тип корпуса — PGA-602; МК 6117.602-D

1867ВЦ8Ф1

Функциональный аналог TMS320C40 ф. Texas Instruments

32-разрядный процессор – это высокопроизводительная двухпроцессорная система на кристалле, содержащая два ядра 32-разрядного процессора цифровой обработки сигналов с плавающей запятой. Процессорные ядра соединены через коммуникационные порты, которые обеспечивают прием/передачу данных со скоростью до 480 Мбайт/с. Это дает возможность реализовать эффективную мультипроцессорную обработку данных. Периферийные устройства могут подключаться к любому из процессоров в любое время через коммутатор и, соответственно, могут управляться из любого процессора.

Сферы применения


Управляющая и вычислительная аппаратура, предназначенная для применения в условиях необходимости вычислений в реальном времени.

РАДИАЦИОННО-СТОЙКИЙ 32-РАЗРЯДНЫЙ МИКРОПРОЦЕССОР НА БАЗЕ АРХИТЕКТУРЫ SPARC V8E

Тип корпуса: МК 6117.602-D

1906BM01A6

Функциональный аналог отсутствует

32-разрядный микропроцессор с повышенной стойкостью к специальным внешним воздействующим факторам, четырьмя портами SpaceWire, двумя портами CAN 2.0B, двумя портами MIL-STD-1553, интегрированными контроллерами PCI 2.2, Ethernet и портом USB 2.0.

Отличительные особенности:

- Семиступенчатый конвейер команд с предсказанием переходов
- Интерфейс отладки JTAG
- Конфигурируемый кэш 1-го уровня
- Контроллеры внешней памяти SRAM, PROM и SDRAM (ПЗУ, СОЗУ, СДОЗУ)
- Четыре таймера/счетчика
- Параметры спецстойкости: 7.И1 5УС, 7.И6 5УС, 7.И7 0,5×5УС, 7.И12 / 7.И13 2×2Р, 7.С1 5УС, 7.С4 5УС, 7.К1-0,5×2К/2К, 7.К4 0,5х1К, 7.К11 60 МэВ-см2/мг

Сферы применения

Применяется при построении высокопроизводительной, отказоустойчивой аппаратуры для работы в космическом пространстве.

МИКРОКОНТРОЛЛЕРЫ: 8-РАЗРЯДНЫЕ

Функциональный аналог AT89S8253 ф. Atmel

8-разрядный микроконтроллер представляет собой высокопроизводительный мультиинтерфейсный периферийный сопроцессор и включает в себя программируемый микроконтроллер с блоками энергонезависимой памяти и большое количество разнообразных интерфейсов. В сопроцессоре обеспечена поддержка алгоритмов защиты данных, описанных в ГОСТ 28147–89. Микроконтроллер совместим по системе команд и по функциональному назначению выводов с аналогичными устройствами семейства 80С51.

Отличительные особенности:

- Встроенная память программ (Flash)
- Встроенная память данных (EEPROM)
- Встроенная система защиты данных

Сферы применения

Применяется при построении высокопроизводительной, отказоустойчивой аппаратуры для работы в космическом пространстве.

Тип корпуса – 4203.64-1

МИКРОКОНТРОЛЛЕРЫ: 8-РАЗРЯДНЫЕ

Тип корпуса: H16.48-2B

Тип корпуса: 4203.64-2

1887BE4Y

Функциональный аналог Atmega8535-16PI ф. Atmel

8-разрядный микроконтроллер построен на базе RISC-архитектуры, с 8 кБ энергонезависимой памяти программ, 1 кБ энергонезависимой памяти данных, 512 байтами внутренней оперативной памяти. Особенно перспективно использование в портативной носимой аппаратуре и приборах, имеющих жесткие ограничения по соотношению быстродействие / потребляемая мощность / стоимость.

1887BE7T

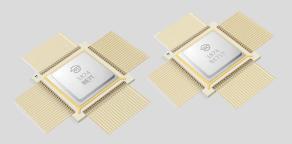
Функциональный аналог Atmega 128 ф. Atmel

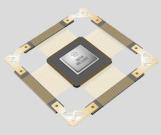
8-битный микроконтроллер построен на базе RISC-архитектуры, с 128 кБ энергонезависимой памяти программ, 4 кБ энергонезависимой памяти данных, 4 кБ внутренней оперативной памяти, с возможностью подключения внешней оперативной памяти объемом до 64 кБ.

Сферы применения

Управление робототехническими комплексами, системы автоматизации технологических процессов, системы автоматизированного управления электроприводом, оргтехника, вычислительная техника, телекоммуникационная техника.

Сферы применения


Системы приема, передачи и обработки информации, встроенное управление и автономные необслуживаемые аппараты.



МИКРОКОНТРОЛЛЕРЫ: 16-РАЗРЯДНЫЕ, В ТОМ ЧИСЛЕ РАДИАЦИОННО-СТОЙКИЕ

Тип корпуса — 4235.88-1

Тип корпуса МК 4250.208-1

1874BE7T/1874BE71T

Функциональные аналоги TN87C196KC-20 ф. Intel (прототипы) UT80C196KDS (Aeroflex)

16-разрядные микроконтроллеры имеют архитектуру, ориентированную на создание управляющих систем, функционирующих в режиме реального времени с возможностью адаптации и модификации под конкретные приложения. Реализована полная программная совместимость с применяемым серийным МК 1874ВЕО5Т. 1874ВЕ7Т - 16-канальный АЦП. 1874ВЕ71Т - 12-канальный АЦП.

1874BE10AT

Функциональный аналог UT80C196KDS (Aeroflex)

16-разрядный микроконтроллер с многоканальным АЦП, интерфейсами ГОСТ Р 52070, SpaceWire, JTAG и функцией обнаружения и исправления ошибок внешней памяти для построения вычислительных и управляющих систем, эксплуатирующихся в условиях воздействия специальных факторов. Увеличена производительность путём перехода на 32-разрядную шину данных, добавления 32-битного АЛУ и нового набора команд. Введена подсистема арифметических команд, выполняемых за один такт.

Сферы применения

Цифровая аппаратура управления электродвигателями, средства радиолокации, аппаратура с повышенными требованиями по стойкости к специальным внешним воздействующим факторам.

Сферы применения

Средства измерения, связи, наблюдения, безопасности, автоматизации производства; медицина, энергетика, промышленность, в том числе электроприводы, различные системы управления, работающие в условиях с повышенными требованиями к спецвоздействиям.

ПРЕЦИЗИОННЫЕ СИГМА-ДЕЛЬТА АЦП

Тип корпуса — 4119.28-1

1273NB19T

Функциональный аналог AD73360 ф. Analog Devices

16-разрядный сигма-дельта аналого-цифровой преобразователь содержит шесть независимых каналов, каждый из которых имеет программируемый формирователь входного сигнала и усилитель с программируемым коэффициентом усиления. В состав микросхемы входит внутренний источник опорного напряжения с программируемым уровнем. Последовательный порт (SPORT) совместим со стандартными ПЦОС и обеспечивает все функции управления и обмена данными, а также поддерживает каскадирование до восьми микросхем в каскаде в многоканальных системах.

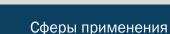
Сферы применения

Применяется в законченных системах сбора и обработки данных, приложениях с многоканальными аналоговыми входами, в аппаратуре для промышленного измерения мощности, в системах управления электроприводом и в совместной работе с DSP.

14-РАЗРЯДНЫЕ ЦАП

Тип корпуса —Н16.48-1В

Тип корпуса — H16.48-1B

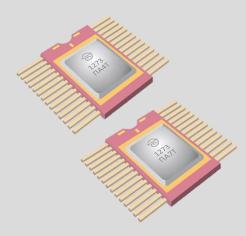

Функциональный аналог AD9772A ф. Analog Devices

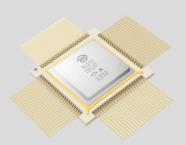
14-разрядный цифро-аналоговый преобразователь содержит параллельный интерфейс данных, цифровой интерполирующий фильтр, внутренний умножитель частоты с ФАПЧ, встроенный источник опорного напряжения и дифференциальный токовый выход. Выходной ток полной шкалы может регулироваться от 2 до 20 мА. Токовый выход может использоваться в несимметричном или дифференциальном включении.

1273ПА6У

Функциональный аналог AD9755 ф. Analog Devices

14-разрядный цифро-аналоговый преобразователь содержит два мультиплексируемых параллельных интерфейса данных, внутренний умножитель частоты с ФАПЧ, встроенный источник опорного напряжения и дифференциальный токовый выход. Выходной ток полной шкалы может регулироваться от 2 до 20 мА. Возможно использование выхода в несимметричном или дифференциальном включении.


Применяются в одноканальном и мультиканальном передающем коммуникационном оборудовании, использующем цифровую модуляцию, в том числе в беспроводных передающих системах базовых станций сотовой связи, кабельных передатчиках, модемах и другой аппаратуре.



14-РАЗРЯДНЫЕ ЦАП

Тип корпуса

4119.28-1

Тип корпуса 4235.88-1

1273ПА4Т и 1273ПА7Т

Функциональные аналоги AD9764AR и AD9744 ф. Analog Devices

14-разрядный цифро-аналоговый преобразователь содержит параллельный интерфейс данных, встроенный источник опорного напряжения и дифференциальный токовый выход. Выходной ток полной шкалы может регулироваться от 2 до 20 мА. Токовый выход может использоваться в несимметричном или дифференциальном включении.

1273ΠA4T:

- Максимальная частота обновления выходных данных, МГц — 125
- Потребляемая мощность: 170 мВт при 5 В
- Режим пониженного потребления: 25 мВт при 5 В

1273ΠA7T:

- Максимальная частота обновления выходных данных, МГц 210
- Потребляемая мощность: 160 мВт при 3,6 В
- Режим пониженного потребления: 15 мВт при 3,3 В

В наличии на СГИ

В наличи

1273ПA13T

Функциональный аналог отсутствует

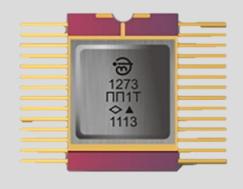
14-разрядный цифро-аналоговый преобразователь на источниках тока. Микросхема содержит последовательный порт управления SPI, встроенный источник опорного напряжения, умножитель тактовой частоты с ФАПЧ. Каждый канал ЦАП включает в себя параллельный интерфейс входных данных, цифровые интерполирующие фильтры, цифровой квадратурный модулятор и пару комплементарных токовых выходов. Микросхема имеет два режима пониженного потребления мощности.

Сферы применения

Одноканальное и мультиканальное передающее коммуникационное оборудование, использующее цифровую модуляцию, в том числе в беспроводных передающих системах базовых станций сотовой связи, кабельных передатчиках, модемах и другой аппаратуре.

Сферы применения

Беспроводные передающие системы спутниковых группировок, системы связи на объектах с повышенным радиационным фоном, кабельных передатчиках, обладающих повышенной стойкостью к спецвоздействиям.



ИНТЕРФЕЙСНЫЕ ИМС: АУДИОКОДЕК

Тип корпуса 4119.28-1

1273NN1T

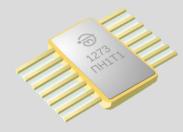
Функциональный аналог TLC320AC02 ф. Texas Instruments

14-разрядный аудиокодек содержит входной полосовой фильтр на переключаемых конденсаторах, 14-разрядный АЦП, 14-разрядный ЦАП, выходной ФНЧ на переключаемых конденсаторах с компенсацией sinx/x, последовательный порт для управления и передачи данных.

Девять регистров управления позволяют задавать частоту преобразования, коэффициент усиления входных и выходных усилителей, конфигурировать работу аналоговых блоков, цифровой части и последовательного порта.

Сферы применения

Применяется в системах синтеза и распознавания речи, системах кодированной связи, в средствах сбора и регистрации данных.



АСИНХРОННЫЕ DC/DC ПРЕОБРАЗОВАТЕЛИ

Тип корпуса 401.14-5М

Тип корпуса 401.14-5М

1273NH16T1

Функциональный аналог LM2675-ADJ ф. Texas Instruments

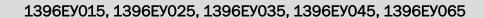
Импульсный асинхронный понижающий DC/DC преобразователь напряжения с выходным током нагрузки до 2 А. Микросхема содержит внутренний источник опорного напряжения, усилитель сигнала ошибки, генератор пилообразного сигнала, ШИМ-компаратор, драйвер управления встроенным силовым транзистором, стабилизатор напряжения питания внутренних блоков, блок включения/выключения, который переводит микросхему в режим ожидания. Регулируемое выходное напряжение от 1,2 до 27 В.

1273NH1T1

Функциональный аналог LM2675-ADJ ф. Texas Instruments

Импульсный асинхронный понижающий DC/DC преобразователь напряжения с выходным током нагрузки до 1 А. Микросхема содержит внутренний источник опорного напряжения, усилитель сигнала ошибки, генератор пилообразного сигнала, ШИМ-компаратор, драйвер управления встроенным силовым транзистором, стабилизатор напряжения питания внутренних блоков, блок включения/выключения, который переводит микросхему в режим ожидания. Регулируемое выходное напряжение от 1,2 до 37 В.

Сферы применения


Применяются во вторичных источниках питания, преобразователях напряжения, интегрированных непосредственно на платах оборудования.

ШИМ-КОНТРОЛЛЕРЫ: СЕРИЯ 1396ЕУХХХ

Корпус 5121.20-А

Функциональные аналоги серии UCC280 ф. Texas Instruments

Микросхемы серии 1396ЕУххх представляют собой двухтактные ШИМ-контроллеры для построения вторичных источников питания с двухтактной (push-pull) или полумостовой топологией. Они содержат источник опорного напряжения, блоки защиты от пониженного и повышенного напряжения питания, датчик тока, схему плавного запуска, ШИМ-компаратор, частотозадающий генератор, выходные драйверы, программируемую компенсацию наклона на входе СS и разрядный транзистор. 1396ЕУ065 представляет собой ШИМ-контроллер с фазовым сдвигом. Такие ШИМ-контроллеры реализуют управление силовым каскадом полного моста посредством резонансного переключения при нулевом напряжении для обеспечения высокой эффективности на высоких частотах.

Сферы применения

- Блоки питания
- Дисплеи
- LCD-панели

НАПРАВЛЕНИЯ ДИСКРЕТНОЙ полупроводниковой экб

Существующие направления дискретной полупроводниковой ЭКБ АО «НИИЭТ»

Мощные СВЧ-транзисторы

Кремниевые биполярные P-, L- диапазонов частот (2Т9128AC, 2Т9211AC, серии 2Т9212-

Кремниевые полевые DMOS Р- диапазона частот (серии 2ПЕ226, 2ПЕ310, 2ПЕ311 и др.)

2Т9214 и др.)

Кремниевые полевые LDMOS P-, L- диапазонов частот (серии 2П9103, 2П9110, 2П9120, 2П9133, серия КП9171 и др.)

НЕМТ на основе нитрида галлия L-, S, C-, X- диапазонов частот (6П9140A1 серии 6П91441-6П9146, серии ПП9136-ПП9139 и др.) Усилительные ВЧ-, СВЧ-модули

Гибридные в миниатюрном корпусе (**M421377**)

Модули Типа «Pallet» (**M421354**)

В металлическом экранированном корпусе (УМ1523-2K, УМ1523-100, УМ145155-2K, УМ145155-200, УМ120120-300, УМ120140-2K, УМ2732-300) Интегральные схемы СВЧ

Гибридные СВЧинтегральные схемы (МУМ-60) Силовые переключающие транзисторы

Силовые GaN-транзисторы с индуцированным каналом (ТНГ-К 10030, ТНГ-К 20020, ТНГ-К 20040, ТНГ-К 65020, ТНГ-К 65030, ТНГ-К 65050)

Мощные радиационностойкие Trench-DMOS транзисторы (2ПЕ230Б9, 2ПЕ230В91, 2ПЕ315А, 2ПЕ316А)

СЕРИЙНО ПОСТАВЛЯЕМЫЕ ТРАНЗИСТОРЫ АО «НИИЭТ»

СЕРИЙНЫЕ ИЗДЕЛИЯ СВЧ GaN-ТРАНЗИСТОРЫ В МЕТАЛЛОКЕРАМИКЕ

ПП9136А

 $P_{BHX} = 5 BT$ $f_{TFCT} = 4 \Gamma \Gamma$ Ц $K_{VP} = 16 \, дБ$ $\eta_{\rm c} = 50 \%$ $U_{\Pi \mu T} = 28 B$

ПП9137А

 $P_{BHX} = 10 BT$ $f_{TFCT} = 4 \Gamma \Gamma \mu$ $K_{VP} = 12 \, дБ$ $\eta_{\rm c} = 50 \%$ $U_{\Pi \mu T} = 28 B$ CW

ПП9138А

 $f_{TECT} = 4 \Gamma \Gamma$ ц $K_{VP} = 11 \, дБ$ $\eta_{\rm C} = 50 \%$ $U_{\Pi \mu T} = 28 B$ CW

 $P_{BHX} = 15 BT$

ПП9138Б

 $P_{RHX} = 25 BT$

 $f_{TFCT} = 4 \Gamma \Gamma \mu$ $K_{VP} = 9$ дБ $\eta_{\rm c} = 50 \%$ $U_{\Pi \mu T} = 28 B$ CW

ПП9139А1

 $P_{BHX} = 50 BT$ $f_{TECT} = 2,9$ ГГц $K_{VP} = 13 \, дБ$ $\eta_c = 50 \%$ $U_{\Pi \mu T} = 28 B$ CW

ПП9139Б1

 $P_{BbIX} = 100 BT$ $f_{TECT} = 1,5$ ГГц $K_{yp} = 13 \, дБ$ $\eta_{\rm c} = 45 \%$ $U_{\Pi \mu T} = 28 B$ CW

KT-55C-1

Сферы применения:

- Связь
- Медицинская техника
- Радиосвязь и телекоммуникации
- Радиолокация и навигация
- Авиация

KT-81C

CW

KT-81C

KT-81C

KT-81C

KT-55C-1

Функциональные аналоги

ПП9136А - СGH40006Р ф. Сгее ПП9137А - СGH40010 ф. Сгее ПП9138A - CGH35015F ф. Cree ПП9139A1- CGH40045F ф. Cree

СЕРИЙНЫЕ ИЗДЕЛИЯ СВЧ GaN-ТРАНЗИСТОРЫ В МЕТАЛЛОКЕРАМИКЕ

ПП9170А

 $P_{B \to X \, N} = 200 \, BT$ $f_{TECT} = 2 \Gamma \Gamma \mu$

 $K_{VP} = 13 \, дБ$

 $\eta_c = 50 \%$

 $U_{\Pi NT} = 50 B$

0 = 10

Ти = 300 мкс

ПП9170Б

 $P_{BHX M} = 100 BT$

 $f_{TFCT} = 3,1$ ГГц $K_{VP} = 11$ дБ

 $\eta_{\rm c} = 50 \%$

 $U_{\Pi \mu T} = 50 B$ 0 = 10

Ти = 300 мкс

ПП9170В

 $P_{BHX M} = 150 BT$

 $f_{TFCT} = 3,1$ ГГц

K_{VP} = 12 дБ $\eta_{c} = 55 \%$

 $U_{\Pi \mu T} = 50 \text{ B}$

0 = 10

Ти = 300 мкс

ПП9170Г

 $P_{BbIX \, II} = 50 \, BT$

 $f_{TECT} = 4 \Gamma \Gamma \mu$ $K_{VP} = 12 \, дБ$

 $\eta_{\rm C} = 50 \%$

 $U_{\Pi \mu T} = 50 B$

0 = 10

Ти = 300 мкс

ПП9170Д

 $P_{BHX \, II} = 100 \, BT$

 $f_{TFCT} = 4 \Gamma \Gamma \mu$ K_{vp} = 13 дБ

 $\eta_{c} = 50 \%$

 $U_{\Pi \mu T} = 50 B$

0 = 10

Ти = 300 мкс

ПП9170Е

 $P_{BblX II} = 50 BT$

 $f_{TECT} = 6 \Gamma \Gamma \mu$

 $K_{VP} = 12 \, дБ$

 $\eta_{\rm C} = 45 \%$

 $U_{\Pi \Pi \Pi} = 45 B$

0 = 10

Ти = 300 мкс

KT-55C-1

KT-55C-1

KT-55C-1

KT-81

KT-55C-1

KT-81

Сферы применения:

- Связь
- Медицинская техника
- Радиосвязь и телекоммуникации
- Радиолокация и навигация
- Авиация

Функциональные аналоги

ПП9170A - GD200 ф. Gallium Semiconductor

ПП9170Б - CLF3H0035-100 ф. Ampleon

ПП9170В - CGHV40180 ф. Macom

ПП9170Г - CGHV40050 ф. Macom

СВЧ LDMOS-ТРАНЗИСТОРЫ ДЛЯ ПЕРЕДАТЧИКОВ ЦИФРОВОГО

КП9171А

 $P_{BHX \Pi O} = 140 BT$ $f_{TFCT} = 860 MГц$ $K_{yp} = 20 \, дБ$ $\eta_{\rm c} = 45 \%$ $M_3 = -30$ дБ $U_{\Pi \mu T} = 50 \text{ B}$ CW

КП9171БС

ЭФИРНОГО ТЕЛЕВЕЩАНИЯ

 $P_{BHX} = 180 BT$ $f_{TFCT} = 550 MГц$ $K_{VP} = 18,6 \, дБ$ $IMD_{SHIDR} = -33 дБ$ $n_c = 50 \%$ $U_{\Pi \mu T} = 50 B$ CW

КП9171ВС

 $P_{RMX} = 135 BT$ $f_{TFCT} = 700 MГц$ K_{vp} = 19 дБ IMD_{SHI DR} = -25 дБ $\eta_{\rm C} = 30 \%$ $U_{\Pi \mu T} = 50 B$ CW

КП9171ГС

P_{вых и} = 1200 Вт $f_{TFCT} = 500 MГц$ $K_{yp} = 18 \, дБ$ $\eta_{\rm C} = 50 \%$ $U_{\Pi \mu T} = 50 \text{ B}$ 0 = 10 Ти = 2 мс

КП9169АС

Р_{вых и} = 250 Вт $f_{TFCT} = 1.2, 1.4 \Gamma \Gamma \mu$ K_{VP} = 12 дБ $\eta_{\rm c} = 45\%$ $U_{\Pi \mu T} = 50 B$ 0 = 5 Ти = 4 мс

КП9169БС

 $P_{BblX \, N} = 500 \, BT$ $f_{TFCT} = 1.2, 1.4 \Gamma \Gamma$ Ц $K_{yp} = 12 \, дБ$ $\eta_{\rm C} = 45\%$ $U_{\Pi \mu T} = 50 B$ 0 = 5 Tu = 4 MC

Сферы применения:

- Связь
- Радиосвязь и телекоммуникации
- Радиолокация и навигация

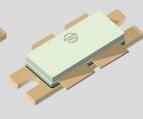
KT-55C-1

KT-103A-2

KT-103A-2

KT-103A-2

KT-103A-2


KT-103A-2

Функциональные аналоги

КП9171A - BLF881 ф. Amleon КП9171БС - BLF989E ф. Amleon KΠ9171BC - BLF989S φ. Amleon

СВЧ LDMOS-ТРАНЗИСТОРЫ ДЛЯ БОРТОВОГО РАДИОЭЛЕКТРОННОГО ОБОРУДОВАНИЯ (БРЭО)

КП9172АС

 $P_{BbIX IJ} = 1000 \text{ BT}$ $f_{TECT} = 860 \text{ MFL}$ $K_{yp} = 17 \text{ A}$ $\eta_{C} = 52 \%$ $U_{\Pi J J J} = 50 \text{ B}$ 0 = 10

KT-103A-2

Ти = 300 мкс

КП9172БС

 $P_{Bых \, \text{И}} = 1\,000\,\text{BT}$ $f_{\text{TECT1}} = 960\,\text{МГц}$ $f_{\text{TECT2}} = 1\,215\,\text{МГц}$ $K_{yp} = 15\,\text{дБ}$ $\eta_{\text{C}} = 50\,\%$ $U_{\text{ПИТ}} = 50\,\text{B}$ Q = 10 $T_{\text{И}} = 100\,\text{МКС}$

КП9172ВС

 $P_{B ext{B B I X } ext{ M}} = 800 \ BT$ $f_{T ext{ECT}1} = 1 \ 200 \ M ext{Гц}$ $f_{T ext{ECT}2} = 1 \ 400 \ M ext{Гц}$ $K_{y ext{Y}} = 14 \ \Delta B$ $\eta_{ ext{C}} = 45 \ \%$ $U_{\Pi ext{M}T} = 50 \ B$ Q = 10 $T ext{M} = 300 \ M ext{KC}$

КП9172ГС

 $P_{BblX \, H} = 900 \, BT$ $f_{TECT1} = 1 \, 450 \, M\Gamma$ ц $f_{TECT2} = 1 \, 550 \, M\Gamma$ ц $K_{yP} = 13 \, \Delta B$ $\eta_C = 42 \, \%$ $U_{\Pi H T} = 50 \, B$ Q = 10 $T_H = 100 \, MKC$ KT-103A-2

КП9172ДС

 $P_{BblX \, H} = 350 \, BT$ $f_{TECT} = 2\,900 \, MFL$ $K_{yP} = 12 \, \Delta B$ $\eta_C = 47 \, \%$ $U_{\Pi H T} = 50 \, B$ Q = 10 $TH = 300 \, MKC$

KT-103A-2

Сферы применения:

Авионика – системы опознавания, навигации и связи, радарные системы

KT-103A-2

KT-103A-2

Функциональные аналоги

КП9172БС - BLA6H0912L-1000 ф. Amleon КП9172ВС - BLL8H1214L-500 ф. Amleon КП9172ГС - MRF8P29300HR6 ф. Amleon

Серийное производство – четвертый квартал 2027 г.

СИЛОВЫЕ GaN-ТРАНЗИСТОРЫ

Обозначение	Максимально допустимое напряжение сток-исток, UCИ, B	Постоянный ток стока Іс, А	Диапазон рабочих температур, °С
ТНГ-К 10030	100	30	-55 +150
ТНГ-К 20020	200	20	-55 +150
ТНГ-К 20040	200	40	-55 +150
ТНГ-К 65020	650	20	-55 +150
ТНГ-К 65030	650	30	-55 +150
THГ-K 65050	650	50	-55 +150

Сферы применения:

Применяются в широком спектре изделий: в зарядных устройствах для различных гаджетов, электромобилей, в системах управления электродвигателями, системах преобразования электрической энергии для альтернативных источников (солнечные батареи, ветрогенера-торы), системах питания беспроводных устройств и космических аппаратов, в робототехнике, в медицинских изделиях и многом другом.

Отличительные особенности:

- GaN-силовой транзистор для работы в ключевом режиме;
- Быстрое и контролируемое время спада и нарастания;
- Облегченные требования к затворному драйверу (от 0 В до 6 В);
- Поставляется в металлокерамическом или пластиковом корпусах.

СЕРИЙНО ПОСТАВЛЯЕМЫЕ ТРАНЗИСТОРЫ КАТЕГОРИИ КАЧЕСТВА «ВП»

МОЩНЫЕ СВЧ-ТРАНЗИСТОРЫ: КРЕМНИЕВЫЕ ПОЛЕВЫЕ DMOS ТРАНЗИСТОРЫ Р-ДИАПАЗОНА ЧАСТОТ

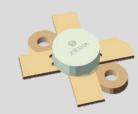
Серии 2ПЕ226, 2ПЕ310, 2ПЕ311

Функциональный аналог 2ПЕ226A - SD2918 ф. STMicroelectronics, 2ПЕ311A - SD3931-10 ф. STMicroelectronics.

Кремниевые n-канальные транзисторы с изолированным затвором межвидового применения для автоматизированных систем связи управления и РЭБ.

2ПЕ226A - диапазон частот до 30 МГц, герметизирован в металлокерамическом корпусе KT-31A;

2ПЕЗ10А - Диапазон частот до 108 МГц, герметизирован в металлокерамическом корпусе КТ-31В;


2ПЕЗ11А - Диапазон частот до 30 МГц, герметизирован в металлокерамическом корпусе КТ-31С.

Металлокерамический корпус KT-31A

Сферы применения

Автоматизированная система управления, средства радиоэлектронной борьбы.

Металлокерамический корпус KT-31B

Металлокерамический корпус KT-31C

МОЩНЫЕ СВЧ-ТРАНЗИСТОРЫ: КРЕМНИЕВЫЕ ПОЛЕВЫЕ LDMOS P-, L- ДИАПАЗОНОВ ЧАСТОТ

Металлокерамический корпус KT-56

Серии 2П826 и 2П979

Функциональные аналоги:

2Π826AC - MRF154, MRF157 φ. M/A-COM, VRF157 φ. Microsemi 2Π979A - BLF246B φ. Philips, DU2860 φ. M/A-COM, D1003UK, D1023UK φ. Semelab 2Π9795 - BLF246B φ. Philips, DU2860 φ. M/A-COM, D1003UK, D1023UK φ. Semelab

Кремниевые полевые генераторные транзисторы с изолированным затвором для работы в усилителях мощности, герметизированы в металлокерамических корпусах.

 $2\Pi 826AC$ - диапазон частот до 30 МГц, напряжение питания U_{CH} = 50 B, коэффициент усиления по мощности K_{yp} – не менее 14 дБ;

2П979А - Диапазон частот до 230 МГц, напряжение питания U_{CH} = 28 В, коэффициент усиления по мощности K_{VP} – не менее 25 раз ;

 $2\Pi 979Б$ - Диапазон частот до 230 МГц, напряжение питания U_{CH} = 28 В, Коэффициент усиления по мощности K_{yp} – не менее 20 раз.

Сферы применения

Усилители мощности

МОЩНЫЕ СВЧ-ТРАНЗИСТОРЫ: HEMT HA OCHOBE НИТРИДА ГАЛЛИЯ L-, S, C-, X- ДИАПАЗОНОВ ЧАСТОТ

Металлокерамический корпус КТ-52A-1

Металлокерамический корпус КТ-81C-2

Серии 6П9144 и 6П9142

Функциональные аналоги BFT92 ф. Infineon, IB0912L30, IB1011S250 ф. Integra Technologies

Мощные СВЧ нитрид-галлиевые несогласованные транзисторы.

Серия 6П9144 представлена двумя транзисторами: 6П9144A4 - диапазон частот до 12000 МГц, коэффициент усиления по мощности K_{yp} – 6 дБ (мин); 6П9144Б4 - диапазон частот до 12000 МГц, коэффициент усиления по мощности K_{yp} – 7 дБ (мин).

Серия 6П9142 представлена двумя транзисторами: 6П9143Б2 – диапазон частот от 7700 Мгц до 8700 МГц, выходная импульсная мощность $P_{\text{ВЫХ И}}$ – 5 Вт; 6П9142А2 - диапазон частот до 6000 МГц, выходная импульсная мощность $P_{\text{Rых И}}$ – 20 Вт.

Сферы применения

Усилители мощности

МОЩНЫЕ СВЧ-ТРАНЗИСТОРЫ НА OCHOBE GAN

Металлокерамический корпус KT-81A-2

6П914ОА

Функциональный аналог IGN1550 ф. Integra

Мощный СВЧ нитрид-галлиевый импульсный транзистор серии «6П». Диапазон частот до 1600 МГц. Герметизирован в металлокерамическом корпусе КТ-81А-2.

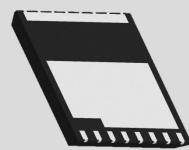
Основные характеристики:

- Выходная импульсная мощность РВЫХ И 400 Вт
- Напряжение питания UCИ = 50 В
- Коэффициент усиления по мощности КУР 13 дБ (мин)
- КПД стока ηС 60 %

Сферы применения

Транзисторы серии «6П» предназначены для работы в усилителях мощности.

АНОНС! ИНИЦИАТИВНЫЙ ПРОЕКТ 2025! РАЗВИТИЕ НАПРАВЛЕНИЯ СИЛОВЫХ КРЕМНИЕВЫХ ТРАНЗИСТОРОВ



СИЛОВЫЕ КРЕМНИЕВЫЕ ТРАНЗИСТОРЫ

Пластиковый корпус VHDFN9

ВАРИАНТ БУДУЩЕЙ КОРПУСИРОВКИ

Серия МОП

Функциональный аналоги FQD13N10L, IRFL4310PbF ф. International Rectifier

Силовые кремниевые транзисторы . На сегодняшний день – собраны макетные образцы в металлокерамических корпусах по типу КТ-93, КТ-95. Проведены измерения. Макетные образцы для отправки на опробование потребителю находятся на складе поставки которых запланированы уже на 4 квартал 2025 года. Основные характеристики:

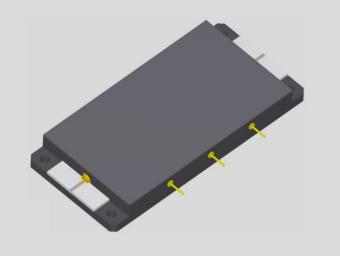
МОП-1 - напряжение сток-исток U_{CH} – не менее 100 В, сопротивление сток-исток R_{CH} – не более 0,18 Ом, ток стока насыщения I_{CMAKC} – не менее 35 А:

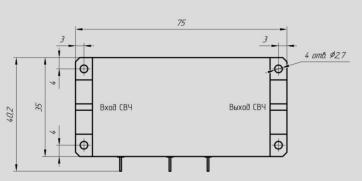
МОП-2- напряжение сток-исток $U_{\text{СИ}}$ – не менее 100 B, сопротивление сток-исток $R_{\text{СИ}}$ – не более 0,20 Ом, ток стока насыщения $I_{\text{С МАКС}}$ – не менее 15 A;

МОП-3 - напряжение сток-исток U_{CN} – не менее 100 В, сопротивление сток-исток R_{CN} – не более 0,03 Ом, ток стока насыщения $I_{\text{C MAKC}}$ – не менее 40 А.

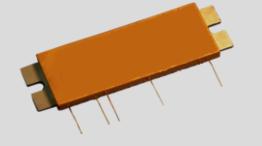
Сферы применения

Применяются в широком спектре изделий: в зарядных устройствах для различных гаджетов, электромобилей, в системах управления электродвигателями, системах преобразования электрической энергии для альтернативных источников (солнечные батареи, ветрогенера-торы), системах питания беспроводных устройств и космических аппаратов, в робототехнике, в медицинских изделиях и многом другом.


УСИЛИТЕЛЬНЫЕ МОДУЛИ АО «НИИЭТ»



ИМПУЛЬСНЫЕ УСИЛИТЕЛЬНЫЕ МОДУЛИ СВЧ В ГЕРМЕТИЧНОМ ЭКРАНИРОВАННОМ КОРПУСЕ L-ДИАПАЗОНА НА GaN-ТРАНЗИСТОРАХ



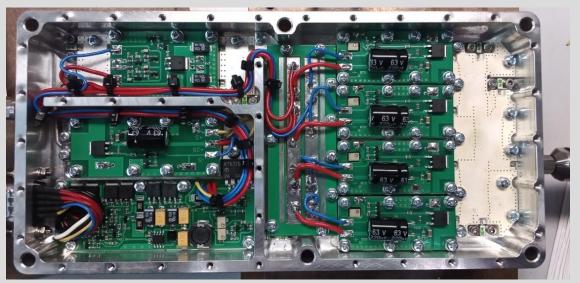
Выходная мощность	100 Вт
Коэффициент усиления	21 дБ
Напряжение питания	50 B
Коэффициент полезного действия	30 %

УСИЛИТЕЛИ МОЩНОСТИ В МИНИАТЮРНОМ КОРПУСЕ

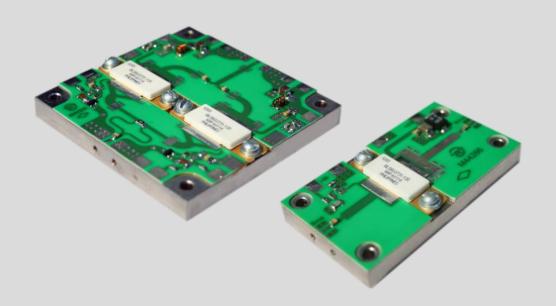
НА GaN-TPAH3ИСТОРАХ

УМ140-12

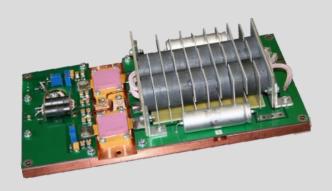

Диапазон частот	960 – 121 5 МГц
Импульсная выходная мощность 100 Вт	т _и =10мкс, Q=10
Коэффициент усиления	30дБ
Напряжение питания	50 B
Корпус	K-2B - 20×67×9 мм

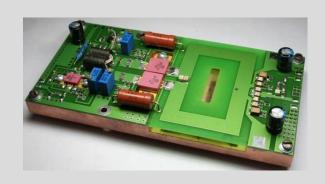


УСИЛИТЕЛЬНЫЕ МОДУЛИ СВЧ В ЭКРАНИРОВАННОМ КОРПУСЕ НА GaN-ТРАНЗИСТОРАХ ДИАПАЗОНА 2-3,6 ГГЦ


Выходная мощность	100 Вт
Коэффициент усиления	50 дБ
Напряжение питания	28 B
Коэффициент полезного действия	45 %

М44265, М44266 - ИМПУЛЬСНЫЕ УСИЛИТЕЛИ МОЩНОСТИ (ПАЛЛЕТ) S-ДИАПАЗОНА

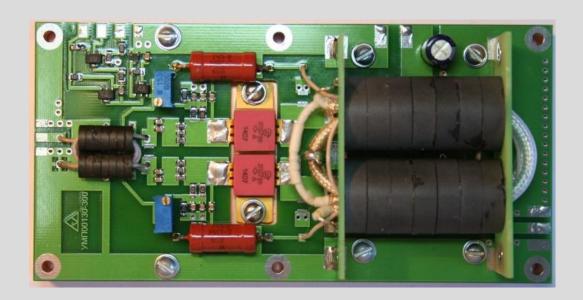

Полоса частот	2,7 – 3,1 ГГц
Выходная мощность	300; 80 Вт
Коэффициент усиления	8;10 дБ
Напряжение питания	35 B
Коэффициент полезного действия	30 %
Режим работы	Импульсный, т _и = 500 мкс, Q = 1 0



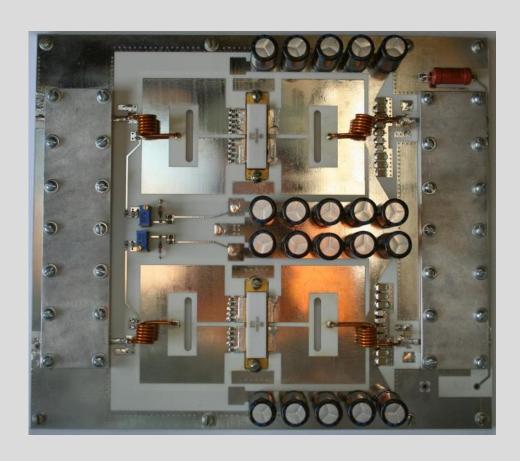
М421354 - УСИЛИТЕЛИ МОЩНОСТИ (ПАЛЛЕТ) НЕПРЕРЫВНОГО РЕЖИМА ВЧ-ДИАПАЗОНА

Полоса частот	1,5 – 30 МГц
Выходная мощность	1000 BT
Коэффициент усиления	20 дБ
Напряжение питания	50 B
Коэффициент полезного действия	50 %
Уровень комбинационных составляющих	≤ - 25 дБ
Режим работы	непрерывный

УМПЗ570-130 – УСИЛИТЕЛИ МОЩНОСТИ (ПАЛЛЕТ) НЕПРЕРЫВНОГО РЕЖИМА ОВЧ-ДИАПАЗОНА


Полоса частот	35 – 70 МГц
Выходная мощность	130 Вт
Входная мощность	20 мВт
Напряжение питания	28 B
Коэффициент полезного действия	50 %
Режим работы	непрерывный

УМПОО130-300 - УСИЛИТЕЛИ МОЩНОСТИ (ПАЛЛЕТ) НЕПРЕРЫВНОГО РЕЖИМА ВЧ-ДИАПАЗОНА


Полоса частот	1,5 – 30 МГц
Выходная мощность	300 Вт
Коэффициент усиления	27 дБ
Напряжение питания	50 B
Коэффициент полезного действия	50 %
Уровень комбинационных составляющих	≤ - 25 дБ
Режим работы	непрерывный

УМП148-2к – ИМПУЛЬСНЫЙ УСИЛИТЕЛЬ МОЩНОСТИ (ПАЛЛЕТ) ОВЧ-ДИАПАЗОНА

Рабочая частота	148,5 МГц
Выходная мощность	2000 Вт
Коэффициент усиления	20 дБ
Напряжение питания	50 B
Коэффициент полезного действия	40 %
Режим работы	Импульсный, т _и =120мкс, Q =500

ИМПУЛЬСНЫЙ УСИЛИТЕЛЬ МОЩНОСТИ В ЭКРАНИРОВАННОМ КОРПУСЕ L-ДИАПАЗОНА

Выходная мощность	1000 Вт
Коэффициент усиления	50 дБ
Напряжение питания	50 B
Коэффициент полезного действия	45 %

ИМПУЛЬСНЫЙ УСИЛИТЕЛЬ МОЩНОСТИ УМ-15K

Рабочая частота	148,5 МГц
Выходная мощность	15 кВт
Коэффициент усиления	17 дБ
Напряжение питания	220 В -50Гц
Габариты	500 x 550 x 450 мм
Режим работы	Импульсный, т _и =120мкс, Q =500

ИСПЫТАТЕЛЬНОЕ ОБОРУДОВАНИЕ

AKTY-001

Автоматическая камера для проведения испытаний на воздействие теплового удара интегральных микросхем и полупроводниковых приборов предназначена для проведения испытаний ЭКБ по методу 205-3 ГОСТ РВ 5962-004.2-2012.

Область применения: испытания ЭКБ

Основные параметры:

- Питание стенда осуществляется от однофазной трехпроводной сети переменного тока напряжением 220 В частотой 50 Гц;
- Габаритные размеры установки, не более:
- ширина: 81 см;- высота: 165 см;
- глубина: 65 см;
- масса стенда, не более: 160 кг.
- Электрическая мощность, потребляемая стендом, не более: 3,5 кВт;
- Диапазон воспроизводимой температуры в камере тепла:
- от +30 до +200°C;
- Диапазон воспроизводимой температуры в камере холода: от 0 до -60; -196 °C;
- Время достижения максимальной (минимальной) температуры, не более: 60 мин;
- Допустимое отклонение температуры от заданного значения:
- при -196°C: не нормируется;
- от -70 до 0 °C: ± 3°C;
- от +30 до +200°C: ± 3°C.

Установка включает в себя следующие основные компоненты:

- Камера тепла, выполненная из нержавеющей стали, с нагревательным элементом мощностью 2 кВт, обеспечивающая режим испытаний от +30 до +200°C;
- Камера холода, обеспечивающая два режима проведения испытаний:
- в жидкостной среде (спирт) в диапазоне температур от 0 до -60°C;
- в жидкостной среде (жидкий азот) при 196°С:
- Рабочие термопары;
- Устройство автоматического перемещения испытуемых образцов;
- Корзина;
- Электронный блок управления (ЭБУ);
- Система автоматической подачи азота;
- Вентиляционный короб;
- Защитный кожух.

СТЕНДЫ ИСПЫТАНИЙ ЭКБ НА НАДЕЖНОСТЬ

Стенды испытаний ЭКБ на надежность шифр «СИТ» - собственная разработка АО «НИИЭТ». Универсальные статические и динамические стенды для проведения отбраковочных испытаний и испытаний ЭКБ на надежность с загрузкой 30/50/70 изделий

Область применения: испытания ЭКБ

Основные параметры:

- Питание стенда осуществляется от трехфазной пятипроводной
- сети переменного тока напряжением 380 В частотой 50 Гц.
- Габаритные размеры стенда, не более:
- ширина: 800 мм;
- высота: 2100 мм;
- глубина: 1000 мм;
- масса стенда, не более: 500 кг.
- Токи по фазам и электрическая мощность, потребляемая стендом, не более:
- фаза А: не более 55 А;
- фаза В: не более 55 А;
- фаза С: не более 55 А:
- мощность: 36 000 ВА.
- Рабочий диапазон напряжений источников питания: (5÷60) В;
- Нестабильность напряжения при изменении тока от 0 до 12,5 A не более ± 2 %;
- Нестабильность напряжения при изменении напряжения сети на ±10 % не более ± 2 %;
- Амплитуда пульсаций напряжения не более ± 2 %;
- Погрешность измерения источниками питания напряжения не более ± 2 %;
- Погрешность измерения источниками питания тока не более ± 2 %;
- Срабатывание защиты от перегрузки по току при превышении заданного значения защиты не более 5%;
- Диапазон воспроизводимой температуры теплоотводящих пластин (35÷95) °С;
- Время достижения предельного значения воспроизводимой температуры и установления теплового режима не более 90 мин;
- Отклонение воспроизводимой температуры теплоотводящих пластин от заданного значения не более ±3 °C;
- Срабатывание тепловой защиты при превышении температуры на 5 °C относительно заданного значения в диапазоне от +35 до +95 °C.

Установка включает в себя следующие основные компоненты:

- Блоки загрузки, предназначенные для установки испытываемых изделий, подключения к цепям питания и обеспечения теплового режима испытаний:
- Блок термостатирования, предназначенный для поддержания заданной температуры теплоотводящих пластин блока загрузки с использованием жидкостного теплообмена;
- Контроллеры температуры, обеспечивающие контроль температуры теплоотводящих пластин блока загрузки;
- Источники питания, предназначенные для электропитания испытываемых изделий.

СТЕНДЫ ИСПЫТАНИЙ ЭКБ НА НАДЕЖНОСТЬ

Стенд испытаний и электротермотренировки входит в линейку «СИТ. Универсальный динамический стенд с воздушным теплообменом для проведения отбраковочных испытаний и испытаний ЭКБ на надежность с возможностью загрузки 21 платы с испытуемыми изделиями.

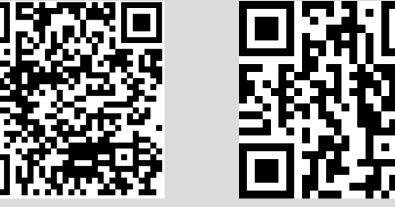
Область применения: испытания ЭКБ

- Питание стенда осуществляется от трехфазной пятипроводной сети переменного тока напряжением 380 В частотой 50 Гц;
- Габаритные размеры стенда, не более:
- ширина: 1000 мм;
- высота: 1800 мм;
- глубина: 1000 мм;
- масса стенда, не более: 500 кг;
- Обеспечиваемый диапазон рабочих температур от +65 до +150°C;
- Программируемый генератор с частотой от 100кГц до 5МГц;
- Точность поддержания температурных режимов в зонах расположения испытуемых изделий не более ± 5°C;
- Дискретность задания температуры 0,1 °C;
- Количество плат загрузки 21 шт;
- Размер (формат) плат загрузки 315х590 мм;
- Индикация загрузочных плат;
- Блок терморегулирования -Термодат 12К5 (либо аналогичная модель);
- Звуковая и световая аварийная индикация (автоматическое отключения нагревателя и двигателя при срабатывании).

Установка включает в себя следующие основные компоненты:

- Рабочую термокамеру, позволяющую загружать до 21 платы с исследуемыми образцами и задавать температуру от H.K.У. до 150 °C;
- Источники питания, для подачи необходимых напряжений на платы с исследуемыми изделиями загрузки с использованием жидкостного теплообмена;
- Программируемый генератор, позволяющий подавать на платы с исследуемыми изделиями управляющие цифровые сигналы;
- Платы для установки исследуемых изделий.

ССЫЛКИ НА РЕСУРСЫ:



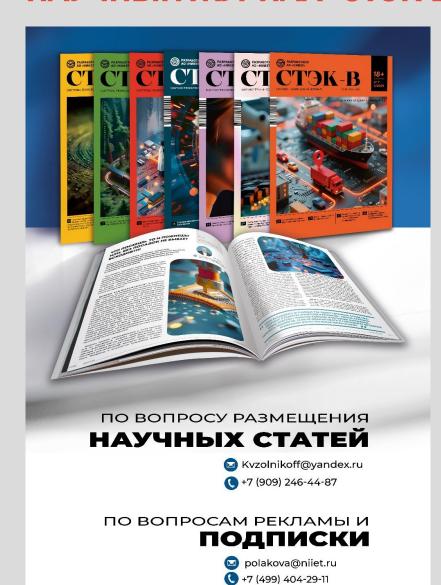
Сайт АО «НИИЭТ»

Продукция АО «НИИЭТ»

OZON

Каталоги АО «НИИЭТ»

Русская электроника



НАУЧНЫЙ ЖУРНАЛ «СТЭК-В»

«СТЭК-В» – это не просто журнал, а целая экосистема для тех, кто увлечен технологиями, стремится к развитию и хочет быть в курсе последних тенденций, объединяющий в себе:

- Технические статьи, от фундаментальных концепций до передовых решений, аналитические обзоры инструментов и технологий.
- Практические руководства и туториалы, пошаговые инструкции, примеры кода и реальные кейсы.
- Интервью с лидерами индустрии. Мнения о научных трендах и вызовах, видение будущего от ведущих специалистов технологических компаний.
- Подборка новостей из самых авторитетных источников.

Основные разделы журнала:

- Электронная компонентная база микро- и наноэлектроники, квантовых устройств.
- Системный анализ, управление, обработка информации, статистика.
- Управление в организационных системах.
- Компьютерное моделирование и автоматизация проектирования.
- Информатика и информационные процессы.

Журнал развивается и совершенствуется: появляются новые рубрики, расширяется коллектив авторов, совершенствуется оформление и подача информации, ищется и находится то, что сможет приятно удивить даже самых читателей.

РАБОТА В НИИЭТ

АО «НИИЭТ» ведет набор персонала на должности:

- инженер-конструктор;
- инженер по настройке УМ и проведению измерений транзисторов;
- инженер-электронщик (разработка ВЧ/СВЧ УМ).

Отправьте ваше резюме на электронный адрес hr@niiet.ru, тел.: +7(473) 226-20-28 (доб. 35-83), +7-920-211-52-62. Наша служба персонала внимательно рассмотрит его и свяжется с вами.

БЛАГОДАРИМ ЗА ВНИМАНИЕ

г. Воронеж, ул. Старых Большевиков, д. 5.

Приемная: +7 (473) 226-20-35 Отдел маркетинга и сбыта: +7 (473) 280-22-94

https://niiet.ru

