ERRATA К1921ВГ015 (Образцы Rev.4 в корпусе LQFP100) Версия от 14.10.2025

1. Регистр RTC_REG[14] содержит некорректные значения

Описание

Регистр RTC_REG[14] содержит результат «логического ИЛИ» значений регистров RTC_REG[12] и RTC_REG[14].

Условия

Всегда.

Последствия

При чтении регистра RTC_REG[14] возвращается результат «логического ИЛИ» значений регистров RTC REG[12] и RTC REG[14].

Рекомендации и способы обхода

Не использовать регистр RTC_REG[14].

2. Смещение нуля каналов ADC_CH1 - ADC_CH7 АЦП последовательного приближения

Описание

На каналах ADC_CH1 - ADC_CH7 ADCSAR наблюдается смещение нуля (шкалы) до (100 - 150) мВ.

Условия

Иногда.

Последствия

При аналого-цифровом преобразовании получается результат со смещением нуля.

Рекомендации и способы обхода

Возможно добиться результата АЦП без смещения нуля используя ручную калибровку модуля АЦП (-64) и увеличив время подключения входа к зарядной емкости АЦП с помощью регистра CH_DELAY[]. Значение CH_DELAY[] вычисляется как Fadc/4000. То есть, частоту тактового сигнала блока АЦП необходимо поделить на число 4000 и записать полученное значение в регистр CHDELAY для каждого измеряемого канала (например, при Fadc = $1 \, \text{M}\Gamma$ ц, CHDELAY = 250, при Fadc = $16 \, \text{M}\Gamma$ ц, CHDELAY = 4000).

Ручную калибровку удается провести только после инициализации АЦП и установки бита ADCRDY. Пример кода ручной калибровки (-64):

```
//Ждем пока АЦП пройдут инициализацию, начатую в самом начале while (!(ADCSAR->ACTL_bit.ADCRDY)) {
};
//Ручная калибровка -64
ADCSAR->ACTL_bit.CALEN = 1;
ADCSAR->ACTL_bit.CALIN = 0x40;
ADCSAR->ACTL_bit.CALLOAD = 1;
```

3. Отсутствие внутреннего pullup резистора USB по линии D+

Описание

Внутри блока USB микроконтроллера pullup резистор по линии D+ не реализован. При использовании внешнего pullup резистора номиналом 1,5 кОм (согласно стандарту USB) HOST может некорректно воспринимать окончание посылки.

Условия

Всегда.

Последствия

HOST может некорректно воспринимать окончание посылки.

Рекомендации и способы обхода

Использовать внешний pullup резистор по линии D+ номиналом (510-750) Ом.

4. Особенности функционирования USB (ревизия 2025г. с EP4)

Описание

Корректная работа интерфейса USB (ревизии микроконтроллера с EP4) возможна с контрольной точкой и одной конечной точкой EP4 (регистр USB->EP[3]). Конечная точка EP4 может быть настроена в режиме IN или в режиме OUT.

Условия

Всегда.

Последствия

Можно работать только с контрольной точкой и одной конечной точкой ЕР4.

Рекомендации и способы обхода

Возможна коррекция в следующей ревизии микроконтроллера.

4.1 Особенности функционирования USB

Описание

После подключения интерфейса USB (ревизия микроконтроллера 2024г) к хосту энумерация устройства проходит корректно, обмен через контрольную точку также проходит корректно. При этом можно работать только с одной конечной точкой, но при этом наблюдается нестабильность в работе конечной точки.

Условия

Всегда.

Последствия

Можно работать только с одной конечной точкой, но при этом наблюдается нестабильность в работе конечной точки.

Рекомендации и способы обхода

В ревизии 2025г. с ЕР4 можно работать с контрольной точкой и только одной конечной точкой ЕР4.

Возможна коррекция в следующей ревизии микроконтроллера.

5. Ошибочный результат команды деления блока FPU

Описание

При использовании команды деления блока FPU (fdiv.s) и команды вычисления квадратного корня (fsqrt.s) в случае, когда один или два операнда команды размещены во FLASH возвращается некорректный результат.

Условия

Один или два операнда команды fdiv.s или fsqrt.s размещены во FLASH.

Последствия

Возвращается некорректный результат деления или вычисления квадратного корня.

Рекомендации и способы обхода

Использование toolkit с программным обходом (добавление команды «NOP»), встроенным в компилятор GCC 14.1:

C сайта https://tools.cloudbear.ru можно скачать пакеты GCC 14.1:

- OC Linux: https://tools.cloudbear.ru/centos8/riscv-gnu-toolchain-linux-14.1.0-22.el8.x86_64.rpm
- OC Windows: https://tools.cloudbear.ru/windows/riscv-gnu-toolchain-elf-14.1.0-20.x86_64.zip

Для применения обхода необходимо компилировать программы с ключом «-mfix-cloudbear-0001»

При использовании транслятора Ассемблер: перед командой fdiv.s или fsqrt.s добавить команду пор.

При использовании компилятора Си(без программного обхода): не использовать в качестве операндов операции деления или вычисления квадратного корня чисел с плавающей запятой константы, расположенные во FLASH. При необходимости использования констант — предварительно записывать их значения в переменные.

6. Особенности функционирования AntiTamper

Описание

После перехода микроконтроллера в режим STOP или POWEROFF невозможно возобновить работу микроконтроллера по событиям AntiTamper.

Условия

Часто.

Последствия

По событиям AntiTamper микроконтроллер не переходит в режим RUN.

Рекомендации и способы обхода

Для восстановления функционала пробуждения микроконтроллера по событиям AntiTamper необходимо к выводу AT_OUT подключить PullUp резистор номиналом 24 кОм. Второй вывод резистора подключить к источнику напряжения (2,2-3,3) В. Подключение PullUp резистора увеличивает ток потребления на 84мкА (при подключении резистора 24кОм к источнику +3,3B).

7. Циклический режим DMA

Описание

При включении циклического режима более чем на одном канале DMA возникают ошибки передачи данных по всем активным каналам.

Условия

При включении циклического режима более чем на одном канале DMA.

Последствия

Возникают ошибки передачи данных по всем активным каналам DMA.

Рекомендации и способы обхода

Использовать циклический режим DMA только на одном канале. Для других каналов можно использовать режим DMA: "разборка - сборка".

Возможна коррекция в следующей ревизии микроконтроллера.

8. Повышенное потребление в режиме POWEROFF

Описание

При переходе в режим POWEROFF на отдельных образцах, а также при напряжении питания менее 2.6 В потребление тока может превышать значения 10мкА и более.

Условия

На отдельных образцах, а также при напряжении питания менее 2.6 В.

Последствия

Потребление тока может превышать значения 10мкА и более.

Рекомендации и способы обхода

Для уменьшения тока утечек Flash, аналоговых блоков, GPIO и USB в режиме PowerOFF рекомендуется использовать электрическую схему, построенную на двух транзисторах AO3415A и AO3416A (рисунок 1).

вывод 61 - для уменьшения утечек по Flash вывод 19 - для уменьшения утечек по аналоговым блокам выводы 33,51,75,93 - для уменьшения утечек по GPIO и USB наиболее критичен вывод 61 по утечкам при питании ниже 2.6 Вольт

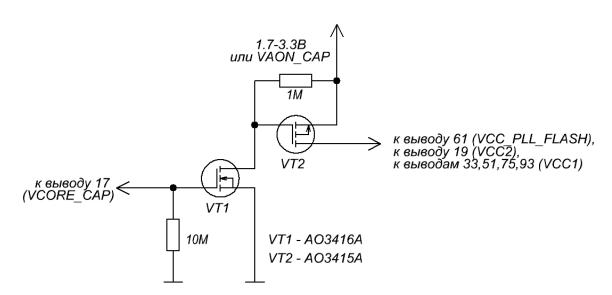


Рисунок 1 – Схема уменьшения тока утечек Flash, аналоговых блоков, GPIO и USB в режиме PowerOFF

9. Отсутствие фиксации событий в регистре PMURTC->HISTORY

Описание

При чтении регистра PMURTC->RTC_HISTORY отсутствует фиксация активных событий, кроме ALARM.

Условия

Всегда для событий, отображаемых в регистре RTC_HISTORY.

Последствия

Невозможно определить какое событие вызвало прерывание PMURTC, а также определить текущие активные события PMURTC, отображаемые в регистре RTC_HISTORY.

Рекомендации и способы обхода

Использовать следующий порядок обновления событий в регистре PMURTC->RTC_HISTORY:

- записать ноль в регистр PMURTC->RTC_HISTORY для фиксации активных событий в регистре.
- следующей командой чтения регистра RTC_HISTORY получим актуальные на текущий момент события.

Возможна коррекция в следующей ревизии микроконтроллера.

10. Не работает калибровка односекундного периода

Описание

Запись любого значения в битовое поле TRIM1S регистра PMURTC->RTC_TRIM не влияет на изменение периода сигнала.

Условия

Всегда.

Последствия

Невозможно осуществлять калибровку односекундного периода.

Рекомендации и способы обхода

Возможна коррекция в следующей ревизии микроконтроллера.

11. Ошибки DMA USB при чтении принятых данных

Описание

При чтении принятых данных (передача OUT) с использованием DMA происходит некорректное чтение данных из буфера точки (контрольной или рабочей).

Условия

Всегда.

Последствия

Происходит некорректное чтение данных из буфера точки (контрольной или рабочей).

Рекомендации и способы обхода

Не использовать DMA при чтении принятых данных (передача OUT). Выполнять чтение **побайтно** из регистра CEP_DATA_BUF – для контрольной точки и USB_EP.DATA_BUF – для рабочей точки.

Возможна коррекция в следующей ревизии микроконтроллера.

Приложение А

(обязательное)

Перечень изменений

Номер и	Описание изменения	Кол-во
дата		страниц
изменения		
	- добавлено приложение A для отражения списка изменений errata.	
№ 1	- добавлено уточнение по п.2 «Смещение нуля каналов ADC_CH1 -	7
14.10.2025	ADC_CH7 АЦП последовательного приближения»	
	- добавлен п.11 «Ошибки DMA USB при чтении принятых данных»	