МИКРОСХЕМЫ ИНТЕГРАЛЬНЫЕ 1273HA084

Руководство пользователя

Содержание

1	Введение	4
2	Назначение	5
2.1	1 Основные характеристики микросхемы	6
2.2	2 Конструктивные характеристики микросхемы	6
2.3		
3	Структурная схема и описание работы микросхемы	14
3.1	1 Рекомендуемые схемы подключения	15
3.2	2 Цифро-аналоговые преобразователи	16
3.3	3 Тактовые сигналы	18
3.4	4 Включение питания и сброс	20
3.5	5 Автономный режим	22
3.6	б Порт управления I^2 С	23
3.7	7 Запись по I ² C	24
3.8	8 Чтение по I ² C	25
3.9	9 Порт управления SPI	26
3.1	10 Чтение и запись по SPI в пакетном режиме	27
3.1	11 Питание и опорное напряжение	28
3.1	12 Последовательный порт ввода данных	29
3.1	13 Режимы мультиплексирования с разделением по времени (TDM)	30
3.1	14 Датчик температуры 3	33
4	Описание регистров управления	33
4.]	1 PLL_CLK_CTRL0 – регистр управления тактовым сигналом и схемой ФАПЧ	36
4.2	2 PLL_CLK_CTRL1 – регистр управления тактовым сигналом и схемой ФАПЧ	37
4.3	3 PDN_THRMSENS_CTRL_1 – регистр управления датчиком температуры и управления питанием блоков	39
4.4	4 PDN_CTRL2 – регистр управления питанием каналов ЦАП	40
4.5	5 PDN_CTRL3 – регистр управления питанием каналов ЦАП	41
4.6	б THRM_TEMP_STAT – регистр результата измерения температуры	41
4.7	7 DAC_CTRL0 - регистр управления	42
4.8	8 DAC_CTRL1 - регистр управления	43

4.9	DAC_CTRL2 - регистр управления	44
4.10	DAC_MUTE1 – регистр выключения звука каналов ЦАП	46
4.11	DAC_MUTE2 – регистр выключения звука каналов ЦАП	47
4.12	DACMSTR_VOL – регистр управления уровнем громкости всех каналов	48
4.13	DAC01_VOL – регистр управления уровнем громкости 1 канала ЦАП	48
4.14	DAC02_VOL – регистр управления уровнем громкости 2 канала ЦАП	48
4.15	DAC03_VOL – регистр управления уровнем громкости 3 канала ЦАП	49
4.16	DAC04_VOL – регистр управления уровнем громкости 4 канала ЦАП	49
4.17	DAC05_VOL – регистр управления уровнем громкости 5 канала ЦАП	49
4.18	DAC06_VOL – регистр управления уровнем громкости 6 канала ЦАП	50
4.19	DAC07_VOL – регистр управления уровнем громкости 7 канала ЦАП	50
4.20	DAC08_VOL – регистр управления уровнем громкости 8 канала ЦАП	50
4.21	DAC09_VOL – регистр управления уровнем громкости 9 канала ЦАП	51
4.22	DAC10_VOL – регистр управления уровнем громкости 10 канала ЦАП.	51
4.23	DAC11_VOL – регистр управления уровнем громкости 11 канала ЦАП	51
4.24	DAC12_VOL – регистр управления уровнем громкости 12 канала ЦАП	52
4.25	DAC13_VOL – регистр управления уровнем громкости 13 канала ЦАП	52
4.26	DAC14_VOL – регистр управления уровнем громкости 14 канала ЦАП	52
4.27	DAC15_VOL – регистр управления уровнем громкости 15 канала ЦАП.	53
4.28	DAC16_VOL – регистр управления уровнем громкости 16 канала ЦАП.	53
	CM_SEL_PAD_STRGTH – регистр управления нагрузочной собностью цифровых выходов и вывода общей точки	53
	DAC_POWER1 – регистр настройки потребляемой мощности алов ЦАП	54
	DAC_POWER2 – регистр настройки потребляемой мощности алов ЦАП	55
	DAC_POWER3 – регистр настройки потребляемой мощности алов ЦАП	56
	DAC_POWER4 – регистр настройки потребляемой мощности палов ЦАП	57
Заклк	очение	63
	ожение А (обязательное) Термины, определения и буквенные	
-	значения параметров, не установленные действующими стандартами	64
Лист	регистрации изменений	66

1 Введение

Развитие цифровой техники и цифровых методов обработки сигналов определило современные тенденции в разработке самых разнообразных систем, устройств и приборов. Значительную роль в этих тенденциях занимает аналого-цифровое и цифро-аналоговое преобразование.

Цифро-аналоговый преобразователь (ЦАП) — это устройство для перевода цифровых данных в аналоговый сигнал.

Микросхемы ЦАП нашли широкое применение в усилителях звука, аудиокодеках, системах обработки видео, системах распознавания данных, системах калибровки датчиков, измерительных устройствах, системах управления двигателями, системах распределения данных, цифровых потенциометрах, системах цифровой связи и т. д.

Настоящее руководство пользователя содержит описание принципа работы и технические характеристики интегральной микросхемы 1273HA084 и другие сведения, необходимые для обеспечения полного использования технических возможностей микросхемы ЦАП.

2 Назначение

Интегральная схема 1273НА084 — это однокристальный 16-канальный цифро-аналоговый преобразователь (ЦАП) для воспроизведения аудио сигналов. Микросхема включает в себя последовательный порт аудио данных, цифровые интерполирующие фильтры, аттенюаторы с логарифмической шкалой изменения уровня громкости, многоуровневые сигма-дельта (Σ - Δ) модуляторы и усилительные каскады с дифференциальными выходами по напряжению.

Микросхема имеет интерфейсы SPI и I²C для управления режимами работы и установки уровня громкости каждого канала с помощью внешнего контроллера. В микросхеме 1273HA084 предусмотрен автономный режим работы без использования SPI и I²C, при котором настройки могут быть заданы с помощью внешних выводов.

Микросхема содержит схему фазовой автоподстройки частоты (ФАПЧ) для формирования внутренних тактовых сигналов. Тактовый сигнал может быть сформирован из сигнала кадровой синхронизации данных левого и правого канала (DLRCLK) или внешнего тактового сигнала от вывода MCLKI/ XTALI (вывод 63).

Напряжение питания аналоговой части микросхемы составляет 5 В, напряжение питания цифровой части — от 2,5 В, схемы ФАПЧ — от 2,5 В. Для получения необходимого напряжения питания цифровой части можно использовать интегрированный драйвер стабилизатора напряжения.

Интегральная схема 1273HA084 имеет датчик температуры кристалла. Чтобы измерить температуру или прочитать результат измерения, необходимо использовать интерфейсы управления.

Основные области применения микросхемы:

- профессиональные аудио устройства;
- домашние кинотеатры, автомобильные аудио системы;
- музыкальные сэмплеры, цифровые микшеры, цифровые процессоры аудио эффектов.

2.1 Основные характеристики микросхемы

Основные характеристики микросхемы:

- напряжение питания цифровой части от 2,5 В;
- напряжение питания аналоговой части 5 В;
- тактовый сигнал внешний или формируемый при помощи схемы ФАПЧ;
- драйвер линейного стабилизатора с программируемым выходным напряжением для питания цифровой части;
- поддерживает разрядность входных данных до 24 бит и частоты дискретизации от 32 до 192 кГц;
- встроенный регулятор уровня громкости звука с автоматической плавной установкой;
 - датчик температуры с цифровым выходом;
 - управление по SPI и I^2 C;
 - программное выключение звука с отсутствием щелчков;
- программное переключение в режим пониженного энергопотребления;
- гибкий последовательный порт ввода данных с поддержкой режима мультиплексирования входных данных с разделением по времени (TDM).

2.2 Конструктивные характеристики микросхемы

Микросхема выполнена в 88-выводном металлокерамическом корпусе 4235.88-1.

Масса микросхемы – не более 4,5 г.

Условное графическое обозначение микросхемы приведено на рисунке 2.1.

Функциональное назначение выводов приведено в таблице 2.1.

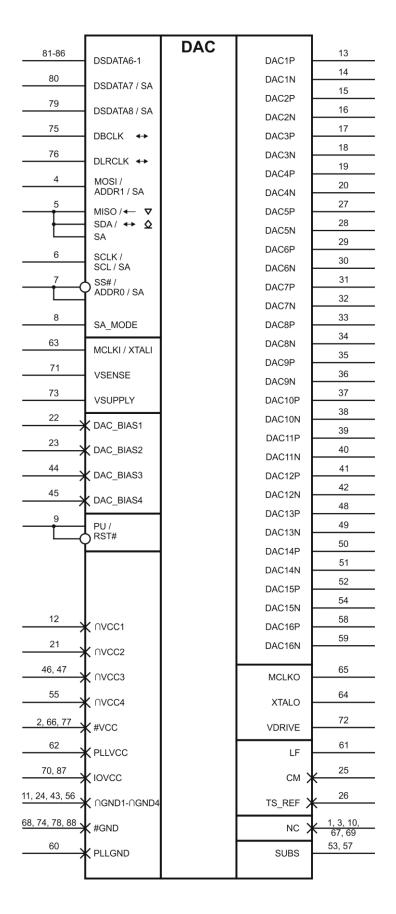


Рисунок 2.1 – Условное графическое обозначение микросхемы 1273HA084

назначение

Таблица 2.1 – Функциональное микросхемы 1273HA084

Номер	Обозначение		Тип
вывода	вывода	Функциональное назначение	вывода
1	2	3	4
68, 74, 78, 88	#GND	Цифровая земля	-
70, 87	IOVCC	Питание цифровых входных и выходных портов	-
71	VSENSE	Вывод подключения к выходу 2,5 В стабилизатора	I
72	VDRIVE	Вывод управления базой проходного транзистора	0
73	VSUPPLY	Вход подключения 5 В стабилизатора	I
75	DBCLK	Вход/выход тактового сигнала последовательной загрузки данных ЦАП	I/O
76	DLRCLK	Вход/выход сигнала кадровой синхронизации данных левого и правого каналов ЦАП	I/O
79	DSDATA8/SA	Вход последовательного ввода данных для ЦАП 15 и ЦАП 16/ Вход выбора режима TDM	I
80	DSDATA7/SA	Вход последовательного ввода данных для ЦАП 13 и ЦАП 14/ Вход выбора режима TDM	I
81	DSDATA6	Вход последовательного ввода данных для ЦАП 11 и ЦАП 12	I
82	DSDATA5	Вход последовательного ввода данных для ЦАП 9 и ЦАП 10	Ι
83	DSDATA4	Вход последовательного ввода данных для ЦАП 7 и ЦАП 8	I
84	DSDATA3	Вход последовательного ввода данных для ЦАП 5 и ЦАП 6	Ι
85	DSDATA2	Вход последовательного ввода данных для ЦАП 3 и ЦАП 4	Ι
86	DSDATA1	Вход последовательного ввода данных для ЦАП 1 и ЦАП 2	Ι
2, 66, 77	#VCC	Вход питания цифровой части	
4	MOSI/ADDR1/SA	Вход управления данными(SPI)/ Адрес 1 (I ² C)/ Автономный режим (SA_MODE)	I
5	MISO/ SDA/ SA	Выход управления данными (SPI) Вход/выход управления данными (I ² C) Автономный режим (SA_MODE)	O/Z I/O/2 I
6	SCLK/SCL/SA	$egin{array}{cccccccccccccccccccccccccccccccccccc$	I

Продолжение таблицы 2.1

1	2	3	4
7	SS#/ADDR0/SA	Вход выбора режима ведомого (slave) (SPI)	I
		активный низкий логический уровень/Адрес	
		0 (I ² C)/ Автономный режим (SA_MODE)	
8	SA_MODE	Автономный режим	I
9	PU/RST#	Включение/ Сброс	I
11	∩GND1	Аналоговая земля	-
12	∩VCC1	Вход питания аналоговой части	-
13	DAC1P	ЦАП 1 положительный выход	О
14	DAC1N	ЦАП 1 отрицательный выход	О
15	DAC2P	ЦАП 2 положительный выход	О
16	DAC2N	ЦАП 2 отрицательный выход	О
17	DAC3P	ЦАП 3 положительный выход	О
18	DAC3N	ЦАП 3 отрицательный выход	О
19	DAC4P	ЦАП 4 положительный выход	О
20	DAC4N	ЦАП 4 отрицательный выход	О
21	∩VCC2	Вход питания аналоговой части	_
22	DAC_BIAS1	Вывод подключения внешней фильтрующей	_
		емкости для ∩VCC2	
23	DAC_BIAS2	Вывод подключения внешней фильтрующей	-
		емкости для ∩GND2	
24	∩GND2	Аналоговая земля	_
25	CM	Вывод подключения внешней фильтрующей	_
		емкости для опорного источника напряжения	
		к выводу ∩GND2.	
		Внутренний источник опорного напряжения	
		может быть выключен с помощью регистра	
		PLL CLK CTRL1, тогда вывод может	
		управляться от внешнего источника	
		напряжения	
26	TS_REF	Вывод подключения внешней фильтрующей	-
		емкости для опорного источника напряжения	
		к выводу ∩GND2	
27	DAC5P	ЦАП5 положительный выход	O
28	DAC5N	ЦАП5 отрицательный выход	O
29	DAC6P	ЦАП6 положительный выход	О
30	DAC6N	ЦАП6 отрицательный выход	О
31	DAC7P	ЦАП7 положительный выход	О
32	DAC7N	ЦАП7 отрицательный выход	О
33	DAC8P	ЦАП8 положительный выход	О
34	DAC8N	ЦАП8 отрицательный выход	O
35	DAC9P	ЦАП9 положительный выход	O
36	DAC9N	ЦАП9 отрицательный выход	О
37	DAC10P	ЦАП10 положительный выход	О
38	DAC10N	ЦАП10 отрицательный выход	О
39	DAC11P	ЦАП11 положительный выход	О
40	DAC11N	ЦАП11 отрицательный выход	О

Окончание таблицы 2.1

1	2	3	4
41	DAC12P	ЦАП12 положительный выход	О
42	DAC12N	ЦАП12 отрицательный выход	О
43	∩GND3	Аналоговая земля	-
44	DAC_BIAS3	Вывод подключения внешней фильтрующей	-
		емкости для ∩GND3	
45	DAC_BIAS4	Вывод подключения внешней фильтрующей	-
		емкости для ∩VCC3	
46,47	∩VCC3	Вход питания аналоговой части	-
48	DAC13P	ЦАП13 положительный выход	O
49	DAC13N	ЦАП13 отрицательный выход	O
50	DAC14P	ЦАП14 положительный выход	О
51	DAC14N	ЦАП14 отрицательный выход	О
52	DAC15P	ЦАП15 положительный выход	O
54	DAC15N	ЦАП15 отрицательный выход	О
55	∩VCC4	Вход питания аналоговой части	-
56	∩GND4	Аналоговая земля	-
58	DAC16P	ЦАП16 положительный выход	O
59	DAC16N	ЦАП16 отрицательный выход	O
60	PLLGND	PLL земля	-
61	LF	Вывод фильтра схемы ФАПЧ	О
62	PLLVCC	Вывод питания схемы ФАПЧ	-
63		Вход главного тактового сигнала/вход	I
	MCLKI/XTALI	кварцевого генератора	
64	XTALO	Выход инвертора кварцевого генератора	О
65	MCLKO	Выход главного тактового сигнала	О
53, 57	SUBS	Технологические выводы корпуса	-
1, 3, 10,	NC	Не используется	-
69, 67			
П	римечание – В графе	«Тип вывода»: I – вход, О – выход, Z – выход с	третьим

Примечание – В графе «Тип вывода»: І – вход, О – выход, Z – выход с третьим состоянием, 2 – режим открытого стока.

2.3 Электрические характеристики микросхемы

Электрические характеристики микросхем 1273НА084 при приемке и поставке приведены в таблице 2.2.

Значения предельно допустимых электрических режимов эксплуатации в диапазоне рабочих температур приведены в таблице 2.3.

Термины, определения, сокращения и буквенные обозначения параметров – по ОСТ В 11 0998-99, ГОСТ Р 57435-2017 и ГОСТ Р 57441-2017.

Термины, определения и буквенные обозначения параметров, неустановленные действующими стандартами, представлены в приложении A. Таблица 2.2 – Значения электрических параметров микросхемы 1273HA084 при приемке и поставке

Наименование параметра,	Буквенное обозначе-	Нор		Темпера
единица измерения, режим измерения	 	парам	_	тура
	ние	не	не более	среды, °С
1	параметра	менее 3		5
1 Drywania wanania wa wakana wa manya wa	2	3	4	3
1 Выходное напряжение низкого уровня по выводам DBCLK, DLRCLK, MISO/SDA/SA,	U _{OL}			
MCLKO, B,			0,4	
$U_{CC1} = 4.5 \text{ B}, U_{CC2} = 3.0 \text{ B}, U_{CC3} = 3.0 \text{ B},$		_	0,4	
$U_{CC4} = 3.0 \text{ B}, U_{CC2} = 3.0 \text{ B}, U_{CC3} = 3.0 \text{ B}, U_{CC4} = 3.0 \text{ B}, U_{CC4} = 1 \text{ MA}$				
2 Выходное напряжение высокого уровня по	U _{OH}			_
выводам DBCLK, DLRCLK, MISO/SDA/SA,	Con			
MCLKO, B,		2,4	_	
$U_{CC1} = 4.5 \text{ B}, U_{CC2} = 3.0 \text{ B}, U_{CC3} = 3.0 \text{ B},$		_, .		
$U_{CC4} = 3.0 \text{ B}, I_{OH} = -1 \text{ mA}$				
3 Размах дифференциального выходного	Upp			1
напряжения по выводам DAC1P – DAC1N,	rr			
DAC2P – DAC2N, DAC3P – DAC3N,				
DAC4P – DAC4N, DAC5P – DAC5N,				
DAC6P – DAC6N, DAC7P – DAC7N,				
DAC8P – DAC8N, DAC9P – DAC9N,				
DAC10P – DAC10N, DAC11P – DAC11N,				
DAC12P – DAC12N, DAC13P – DAC13N,				
DAC14P – DAC14N, DAC15P – DAC15N,		8	9	
DAC16P – DAC16N, B,		O		-60 ± 3
$U_{CC1} = 5.0 \text{ B}, U_{CC2} = 3.3 \text{ B}, U_{CC3} = 5.0 \text{ B},$				25 ± 10
$U_{CC4} = 3.3 \text{ B}$				85 ± 3
4 Ток утечки низкого уровня по выводам	I_{ILL}			
DSDATA1, DSDATA2, DSDATA3, DSDATA4,				
DSDATA5, DSDATA6, DSDATA7/SA,				
DSDATA8/SA, DBCLK, DLRCLK,				
MOSI/ADDR1/SA, MISO/SDA/SA, SCLK/SCL/SA,				
PU/RST#, SS#/ADDR0/SA, SA_MODE,		10		
MCLKI/XTALI, мкА, U _{CC1} = 5,5 B, U _{CC2} = 3,6 B, U _{CC3} = 5,5 B,		-10	_	
$U_{CC4} = 3,5 \text{ B}, U_{CC2} = 3,0 \text{ B}, U_{CC3} = 3,5 \text{ B},$ $U_{CC4} = 3,6 \text{ B}, U_{IL} = 0 \text{ B}$				
5 Ток утечки высокого уровня по выводам	$I_{\rm ILH}$			
DSDATA1, DSDATA2, DSDATA3, DSDATA4,	ILH			
DSDATA5, DSDATA6, DSDATA7/SA,				
DSDATA8/SA, DBCLK, DLRCLK,				
MOSI/ADDR1/SA, MISO/SDA/SA, SCLK/SCL/SA,				
PU/RST#, SS#/ADDR0/SA, SA MODE,				
MCLKI/XTALI, mkA,		_	10	
$U_{CC1} = 5.5 \text{ B}, U_{CC2} = 3.6 \text{ B}, U_{CC3} = 5.5 \text{ B},$				
$U_{CC4} = 3.6 \text{ B}, U_{IH} = U_{CC3}$				
6 Динамический ток потребления от источника	I _{OCC1}			
U _{CC1} , MA,		_	100	
$U_{CC1} = 5,5 \text{ B, } f_{CI_MCLK} = 12,288 \text{ M}\Gamma \text{ц, } f_s = 48 \text{ к}\Gamma \text{ц}$				

Окончание таблицы 2.2

1	2	3	4	5
7 Динамический ток потребления от источника U_{CC2} , мA, $U_{CC2} = 3.6$ B, $f_{CI_MCLK} = 12,288$ МГц, $f_s = 48$ кГц	I _{OCC2}	-	40	
8 Динамический ток потребления от источника U_{CC3} , мA, $U_{CC3} = 5.5$ B, $f_{CI_MCLK} = 12,288$ МГц, $f_s = 48$ кГц	I _{OCC3}	-	10	
9 Динамический ток потребления от источника U_{CC4} , мA, $U_{CC4} = 3.6$ B, $f_{CI_MCLK} = 12,288$ МГц, $f_s = 48$ кГц	I _{OCC4}	-	10	
10 Погрешность усиления характеристики, % от полной шкалы, $U_{\rm CC1} = 5,0$ B, $U_{\rm CC2} = 3,3$ B	E _G	-10	10	
11 Погрешность смещения характеристики, мВ, $U_{CC1} = 5.0 \text{ B}, U_{CC2} = 3.3 \text{ B}$	Eo	-25	25	-60 ± 3 25 \pm 10
12 Динамический диапазон, дБ, $U_{CC1} = 5.0$ В, $U_{CC2} = 3.3$ В, $\Delta f = (20 \ \Gamma \mu - 20 \ \kappa \Gamma \mu)$, $f_s = 48 \ \kappa \Gamma \mu$, уровень входного сигнала $-60 \ dBFS$	DNR	95	_	85 ± 3
13 Общие гармонические искажения плюс шум, $U_{CC1} = 5.0$ B, $U_{CC2} = 3.3$ B, $\Delta f = (20 \ \Gamma \mu - 20 \ \kappa \Gamma \mu)$, $f_s = 48 \ \kappa \Gamma \mu$, уровень входного сигнала -1 dBFS	THD+N	-	-75	
14 Функциональный контроль	ФК	-	_	

Примечания

- 1 Нормы на электрические параметры приведены при условии: нагрузка выходов аудио 3,1 кОм.
- 2 Параметры I_{ILL} , I_{ILH} при температуре минус 60 °C не измеряются, а гарантируются нормами при температуре (25 \pm 10) °C.
- 3 При измерении динамических токов потребления $f_{\text{CI_MCLK1}} = f_s \times 256 = 48 \times 256 = 12288 \ \kappa \Gamma \mu = 12,288 \ M \Gamma \mu \ (в режиме PLL mode).$
 - 4 Измерения динамического диапазона проводятся без фильтра (RMS).
- 5 Измерения общих гармонических искажений плюс шум проводятся при всех работающих каналах.
- 6 При функциональном контроле $f_{\text{CI_MCLK1}} = f_s \times 256$ (в режиме PLL mode), $f_{\text{CI_MCLK1}} = f_s \times 512$ (в режиме Direct).

Таблица 2.3 – Предельно допустимые и предельные режимы эксплуатации микросхемы 1273HA084

	Буквенное	Прел	ельно	Преле	льный
Наименование параметра режима,	обозначен		ый режим	_	ким
единица измерения	ие	-		•	
_	параметра	не менее	не более	не менее	не более
1	2	3	4	5	6
1 Напряжение питания по выводам	U _{CC1}				
∩VCC, B		4,5	5,5	-0,3	5,5
2 Напряжение питания по выводам	U _{CC2}				
#VCC, B		3,0	3,6	-0,3	3,6
3 Напряжение питания по выводам IOVCC	U_{CC3}				
В		3,0	5,5	-0,3	5,5
4 Напряжение питания по выводу	U_{CC4}				
PLLVCC, B		2,25	3,6	-0,3	3,6
5 Входное напряжение по выводу	$U_{\rm I}$				
VSUPPLY, B		3,0	5,5	-0,3	6,0
6 Входное напряжение низкого уровня по	U _{IL}				
выводам DSDATA1, DSDATA2, DSDATA3,					
DSDATA4, DSDATA5, DSDATA6,					
DSDATA7/SA, DSDATA8/SA, DBCLK,					
DLRCLK, MOSI/ADDR1/SA,					
SO/SDA/SA,SCLK/SCL/SA, PU/RST#,					
SS#/ADDR0/SA, SA_MODE,			0.0		
MCLKI/XTALI, B		0	0,8	-0,3	_
7 Входное напряжение высокого уровня	$U_{ m IH}$				
по выводам DSDATA1, DSDATA2,					
DSDATA3, DSDATA4, DSDATA5,					
DSDATA6, DSDATA7/SA, DSDATA8/SA,					
DBCLK, DLRCLK, MOSI/ADDR1/SA,					
MISO/SDA/SA, SCLK/SCL/SA, PU/RST#,					
SS#/ADDR0/SA, SA_MODE, MCLKI/XTALI, B		2,5	U_{CC3}		H + 0.3
8 Выходной ток низкого уровня по	I_{OL}	2,3	0003	_	$U_{CC3} + 0,3$
выводам DBCLK, DLRCLK,	IOL				
MISO/SDA/SA, MCLKO, MA		_	1	_	_
9 Выходной ток высокого уровня по	I_{OH}		1		
выводам DBCLK, DLRCLK,	IOH				
MISO/SDA/SA, MCLKO, MA		-1	_	_	_
10 Частота следования импульсов	f _{CI_MCLK1}	1			
тактовых сигналов MCLK в режиме PLL	ZCI_MCLKI				
mode					
$(256 \times f_s)$, МГц		6,9	40,5	_	_
11 Частота следования импульсов	fci_mclk2	,	,		
тактовых сигналов MCLK в режиме Direct					
(512×f _s), МГц		_	27,1	_	_

Окончание таблицы 2.3

1	2	3	4	5	6	
12 Частота следования импульсов	fci_sclk					
тактовых сигналов SCLK, МГц		_	10	_	-	
13 Частота следования импульсов	fci_dbclk					
тактовых сигналов DBCLK в режиме PLL						
mode						
(256×f _s), МГц		_	27	_	_	
14 Частота дискретизации, кГц	f_s	32	192	_	-	
Примечание — Время работы в одном из предельных режимов должно быть не более 5 с.						

3 Структурная схема и описание работы микросхемы

Структурная схема 1273НА084 представлена на рисунке 3.1.

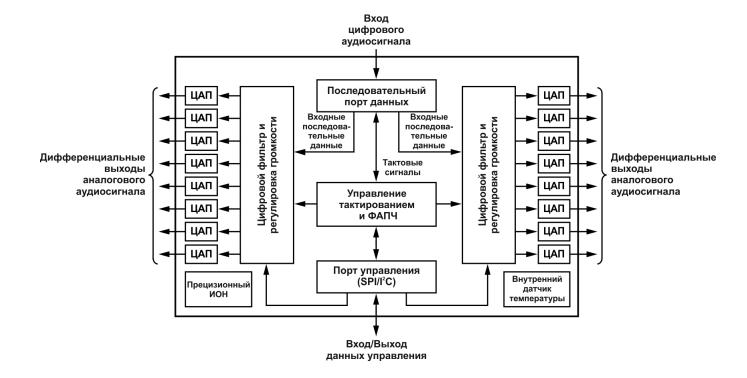


Рисунок 3.1 - Структурная схема микросхемы 1273НА084

Микросхема поддерживает работу \mathbf{c} аудио данными, представленными в дополнительном коде, разрядностью 16 бит и 24 бита, с частотой от 32 до 192 кГц. Последовательный порт ввода данных имеет восемь линий данных (по два канала ЦАП на каждую линию), общий сигнал (DLRCLK) общий кадровой синхронизации тактовый И сигнал последовательной загрузки данных (DBCLK). В ИС 1273HA084 предусмотрен режим мультиплексирования входных данных с разделением по времени (TDM), при котором данные нескольких каналов могут быть переданы по одной линии данных (до 16 каналов).

3.1 Рекомендуемые схемы подключения

Рекомендуемые схемы подключения показаны на рисунках 3.2-3.5. Контурные фильтры для режимов синхронизации схемы ФАПЧ от сигналов DLRCLK и MCLKI/XTALI показаны на рисунке 3.2. Выходные фильтры для дифференциальных выходов ЦАП показаны на рисунках 3.3 и 3.5.

Схема внешнего стабилизатора показана на рисунке 3.4.

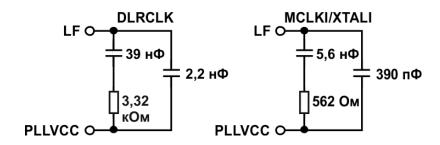


Рисунок 3.2 - Контурные фильтры для режимов синхронизации схемы ФАПЧ от сигналов DLRCLK и MCLKI/XTAL

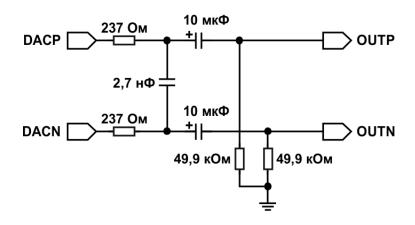


Рисунок 3.3 - Выходной пассивный фильтр

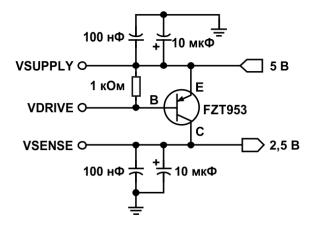


Рисунок 3.4 - Схема внешнего стабилизатора

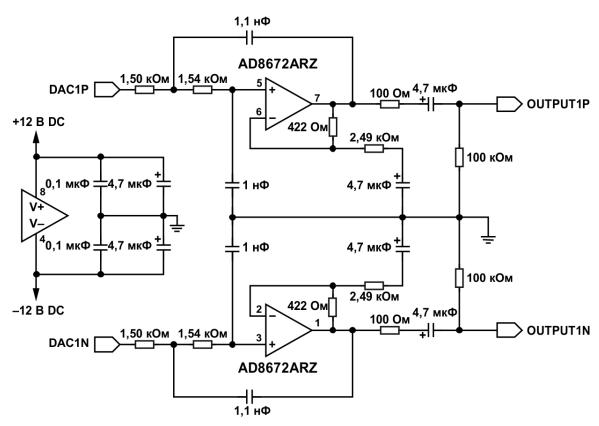


Рисунок 3.5 - Выходной активный фильтр Бесселя второго порядка

3.2 Цифро-аналоговые преобразователи

Микросхема 1273НА084 имеет 16 дифференциальных каналов ЦАП с выходами по напряжению. Каналы ЦАП имеют встроенные цифровые интерполирующие фильтры с ослаблением сигнала в полосе задерживания 68 дБ, линейной ФЧХ. Каждый канал имеет свой независимый программируемый 256 шагов аттенюатор, с диапазоном регулировки по 0,375 дБ.

Микросхема 1273HA084 имеет режим малой задержки распространения сигнала. Этот режим доступен при $f_S = 192 \ \kappa \Gamma \mu$ и включается с помощью битов [2:1] регистра DAC CTRLO. Установив эти разряды в 0b11, задержку распространения можно уменьшить до 10 мкс. Более короткая задержка достигается за счет уменьшения тракта цифровой фильтрации. Выбор ЭТОГО режима оказывает негативное уменьшается полоса пропускания в области звуковых частот и возрастает уровень шумов.

Каждый аналоговый выход в номинальном режиме имеет уровень постоянной составляющей 2,25 В. Дифференциальный сигнал имеет размах

± 2,12 В выше и ниже значения 2,25 В. Максимальный размах дифференциального выходного сигнала 8,48 В.

К дифференциальным аналоговым выходам требуется подключить фильтр, как показано на рисунках 3.3 и 3.5.

В микросхеме 1273HA084 предусмотрена функция управления аналоговыми характеристиками ЦАП. Поэтому можно программировать регистры для уменьшения потребляемой мощности за счет снижения уровней SNR и THD + N. Пониженное энергопотребление происходит за счет изменения внутренних токов смещения.

Регистры DAC_POWER1 - DAC_POWER4 используются для установки четырех режимов потребляемой мощности, индивидуально для каждого из 16 каналов (см. таблицу 3.1).

Таблица 3.1 - Режимы потребляемой мощности и изменение качества выходного сигнала

Установки регистра	Лучшее качество сигнала	Хорошее качество сигнала	Низкое потребление	Минимальное потребление
Динамический ток потребления от источника U_{CC1}	84 мА	75 мА	66 мА	56 мА
Отношение сигнал/шум	0 дБ	-0,2 дБ	-1,5 дБ	-14,2 дБ
ТНD + N (уровень сигнала −1 дБ от полной шкалы)	0 дБ	-1,8 дБ	-3,0 дБ	-5,8 дБ

Для общего контроля потребляемой мощности всех каналов, могут использоваться биты [7:6] регистра PLL_CLK_CTRL1.

3.3 Тактовые сигналы

При включении питания и установке высокого логического уровня на выводе PU/RST# микросхема начинает работу в автономном режиме или в режиме программирования, в зависимости от уровня сигнала на выводе SA_MODE. Тактирование микросхемы в автономном режиме описано в разделе 3.5.

По умолчанию микросхема находится в режиме программирования, выводы DLRCLK и DBCLK находятся в режиме ведомого (slave). Для работы микросхемы 1273HA084 необходимо подать группу сигналов: MCLK, DLRCLK, DBCLK.

Программирование регистров PLL_CLK_CTRL0, PLL_CLK_CTRL1 разрешается только после установления высокого логического уровня на выводе PU/RST# (вывод 9).

При подаче тактового сигнала на вывод MCLKI/XTALI (вывод 63) с частотой $256\times$, $384\times$, $512\times$ или $768\times f_S$ (относительно $f_S=48$ кГц) нужно выбрать встроенную на кристалле схемы ФАПЧ в качестве источника главного тактового сигнала. Для этого надо установить биты выбора главного тактового сигнала (MCS), как показано в таблице 3.3.

По умолчанию микросхема 1273HA084 находится в режиме $256 \times f_S$ (биты MCS регистра PLL_CLK_CTRL0 установлены в 0b00), $f_S = 48 \ \mathrm{k\Gamma \mu}$ (биты FS регистра DAC_CTRL0 установлены в 0b00), тогда частота главного тактового сигнала должна быть равна 12,288 МГц. Чтобы перейти в режим с частотой дискретизации $f_S = 96 \ \mathrm{k\Gamma \mu}$ при той же частоте главного тактового сигнала, необходимо установить биты FS регистра DAC_CTRL0 в 0b01. Аналогичным образом можно установить режим с частотой дискретизации $f_S = 192 \ \mathrm{k\Gamma \mu}$.

В режиме по умолчанию встроенная схема ФАПЧ генерирует внутренний тактовый сигнал из внешнего тактового сигнала. Сигнал сброса активирует схему ФАПЧ, для этого не требуется запись в регистры через интерфейс I²C или SPI в нормальном режиме работы. При включенной схеме ФАПЧ среднеквадратичное значение ошибки временного интервала джиттера не превышает 300 пс.

Таблица 3.2 – Выбор частоты главного тактового сигнала и частоты

дискретизации

Выбор частоты		Выбор частоты главного тактового сигнала (биты MCS регистра						
дискретизации		PLL_CLK_CTRL0)						
(биты FS	MCS	= b00	MCS	= b01	MCS	= b10	MCS	= b11
регистра	Отно-	MCLK,	Отно-	MCLK,	Отно-	MCLK,	Отно-	MCLK,
DAC_CTRL0)	шение	МΓц	шение	МΓц	шение	МΓц	шение	МΓц
32 кГц,	$256 \times f_S$	8,192	$384 \times f_S$	12,288	$512 \times f_S$	16,384	$768 \times f_S$	24,576
FS = b00								
44,1 кГц,	$256 \times f_S$	11,2896	$384 \times f_S$	16,9344	$512 \times f_S$	22,5792	$768 \times f_S$	33,8688
FS = b00								
48 кГц,	$256 \times f_S$	12,288	$384 \times f_S$	18,432	$512 \times f_S$	24,576	$768 \times f_S$	36,864
FS = b00								
64 кГц,	$128 \times f_S$	8,192	192 × f _S	12,288	$256 \times f_S$	16,384	$384 \times f_S$	24,576
FS = b01								
88,2 кГц,	$128 \times f_S$	11,2896	$192 \times f_S$	16,9344	$256 \times f_S$	22,5792	$384 \times f_S$	33,8688
FS = b01								
96 кГц,	$128 \times f_S$	12,288	$192 \times f_S$	18,432	$256 \times f_S$	24,576	$384 \times f_S$	36,864
FS = b01								
128 кГц,	$64 \times f_S$	8,192	$96 \times f_S$	12,288	$128 \times f_S$	16,384	$192 \times f_S$	24,576
FS = b10								
или FS = b11								
176,4 кГц,	$64 \times f_S$	11,2896	$96 \times f_S$	16,9344	$128 \times f_S$	22,5792	$192 \times f_S$	33,8688
FS = b10								
или FS = b11								
192 кГц,	$64 \times f_S$	12,288	$96 \times f_S$	18,432	$128 \times f_{S}$	24,576	$192 \times f_S$	36,864
FS = b10								
или FS = b11								

Когда схема ФАПЧ отключена, нужно использовать независимый кварцевый генератор для формирования главного тактового сигнала.

При использовании ИС 1273HA084 в режиме непосредственной подачи главного тактового сигнала, нужно выключить схему ФАПЧ с помощью регистра PDN_THRMSENS_CTRL_1. В этом режиме нужно подать тактовый сигнал с частотой $512 \times f_S$ (относительно $f_S = 48 \ \mathrm{k\Gamma u}$) на вывод MCLKI, и установить бит CLK SEL регистра PLL CLK CTRL1 в 0b1.

Схема ФАПЧ в микросхеме 1273HA084 может быть запрограммирована в режим синхронизации от внешнего сигнала DLRCLK без внешнего главного тактового сигнала. Если установить биты PLLIN

регистра PLL_CLK_CTRL0 в 0b01 и подключить требуемый контурный фильтр к выводу LF (см. рисунок 3.2), то схема ФАПЧ будет генерировать все необходимые для работы внутренние тактовые сигналы без использования внешнего главного тактового сигнала. Этот режим уменьшает количество высокочастотных сигналов в конструкции и уменьшает электромагнитные помехи.

Так же можно уменьшить излучение электромагнитных помех схемы при использовании внутреннего тактового сигнала последовательной загрузки данных путем установки бита BCLK_GEN в регистре DAC_CTRL1 в 0b1.

Для тактирования внешних устройств можно использовать сигнал MCLKO (вывод 65). Режим работы сигнала MCLKO устанавливается битами [5:4] регистра PLL_CLK_CTRL1. По умолчанию значение битов 0b10, на выводе 65 действует буферизированный сигнал MCLKI.

Значение битов 0b00 устанавливает частоту сигнала МСLКО в диапазоне от 4 до 6 МГц. Значение 0b01 устанавливает частоту сигнала МСLКО — в диапазоне от 8 до 12 МГц. Значение тактовой частоты автоматически масштабируется относительно частоты сигнала МСLКІ (вывод 63).

 Π р и м е р 1 — Биты установлены в 0b00, частота сигнала МСLКI имеет значение 8,192 МГц, тогда на выходе МСLКО (вывод 65) будет сигнал с частотой (8,192/2) = 4,096 МГц.

 Π р и м е р 2 — Биты установлены в 0b01, частота сигнала МСLКI имеет значение 36,864 МГц, тогда на выходе МСLКО (вывод 65) будет сигнал с частотой (36,864/3) = 12,288 МГц.

3.4 Включение питания и сброс

Последовательность подачи напряжения питания:

- подать напряжение питания аналоговой части микросхемы на выводы \cap VCC (выводы 12, 21, 46, 47, 55);
- подать напряжение питания входных и выходных портов на выводы IOVCC (вывод 70, 87);
- только после установления напряжения на выводах ∩VCC и IOVCC подается напряжение питания на выводы #VCC (выводы 2, 67, 77) (при

использовании внутреннего линейного стабилизатора это условие выполняется по умолчанию);

- во время установления всех напряжений питания микросхемы, на вывод PU/RST# (вывод 9) должен подаваться низкий уровень. После установления всех напряжений питания необходимо установить высокий логический уровень на выводе PU/RST# (вывод 9) (для этого можно использовать простую RC цепь).

Низкий уровень сигнала PU/RST# переводит микросхему в состояние низкого энергопотребления (менее 3,0 мкА), блокируя функционирование микросхемы до подачи высокого логического уровня сигнала PU/RST#. После подачи высокого логического уровня на этот вывод, микросхеме требуется 300 мс для перехода в рабочие состояние.

Для начала работы с микросхемой необходимо установить бит PUP регистра PLL_CLK_CTRL0 в 0b1. Бит PUP используется для отключения питания микросхемы. Установка бита PUP в 0b0 переводит микросхему в режим ожидания, сохраняя при этом настройки всех регистров. Кроме того, для отключения отдельных блоков микросхемы можно использовать биты управления питанием в регистре PDN_THRMSENS_CTRL1.

После установки бита PUP, необходимо установить бит MMUTE регистра DAC CTRL0 в 0b0 для включения звука всех каналов.

Бит SOFT_RST в регистре PLL_CLK_CTRL0 устанавливает во всех регистрах управления значения по умолчанию, кроме регистров PLL_CLK_CTRL0 и PLL_CLK_CTRL1. Бит SOFT_RST не выключает аналоговые выходы, и переключение этого разряда не дает слышимых звуковых щелчков.

Последовательность включения микросхемы 1273НА084:

- подать напряжения питания на микросхему 1273HA084, как было описано выше;
- подать на вывод PU/RST# высокий логический уровень после того, как источники питания стабилизируются;
 - установить бит PUP в 0b1;
- запрограммировать нужные регистры для обеспечения требуемого режима работы;
 - установить бит ММUТЕ в 0b0, чтобы включить звук на всех каналах.

3.5 Автономный режим

Микросхема 1273HA084 может работать без управления по интерфейсам I²C или SPI. Такой автономный режим можно задать, установив на выводе SA_MODE уровень напряжения IOVCC. Все регистры имеют значения по умолчанию, задание режимов осуществляется с помощью внешних выводов (смотрите таблицу 3.3).

Таблица 3.3 - Настройки автономного режима

Номер вывода	Значение логического уровня	Режим работы микросхемы				
4	0	Режим ведущего (master) последовательного интерфейса аудиоданных Режим ведомого (slave) последовательного интерфейса аудиоданных				
5	0 1	$MCLKI = 256 \times f_S$, схема ФАПЧ включена $MCLKI = 384 \times f_S$, схема ФАПЧ включена				
6	0	Должен быть установлен в 0				
7	0	Формат данных последовательного интерфейса - I ² S. Режим TDM последовательного интерфейса задается выводами 79 и 80				
Применения						

Примечания

- 1. Высокий логический уровень соответствует подключению к IOVCC.
- 2. Низкий логический уровень соответствует подключению к #GND.

Для установки режима TDM последовательного интерфейса в автономном режиме работы, нужно подать высокий уровень (уровень напряжения IOVCC) на вывод 7. В таблице 3.4 показаны доступные настройки режима TDM, установка этих режимов происходят путем подключения выводов DSDATA8 и DSDATA7 к выводам #GND или IOVCC.

После включения микросхемы 1273HA084 в автономном режиме и установки PU/RST# в высокий уровень, на выводе MCLKO действует буферизированный сигнал MCLKI.

Таблица 3.4 - Режимы TDM

Номер вывода	Значения логического	Режим работы микросхемы
	уровня	
	00	TDM4: DLRCLK импульс
80:79	01	TDM8: DLRCLK импульс
00.77	10	TDM16: DLRCLK импульс
	11	TDM8: DLRCLK 50 % коэффициент заполнения
Ппимеч	ания	

Примечания

- Высокий логический уровень соответствует подключению к IOVCC.
- Низкий логический уровень соответствует подключению к #GND.

3.6 Порт управления I²C

Микросхема 1273HA084 имеет порт управления, совместимый с I²C, который позволяет осуществлять программирование и чтение данных внутренних регистров управления микросхемы. Интерфейс I²C в микросхеме 1273НА084 — двухпроводный, состоящий из линии тактового сигнала SCL (вывод 6) и линии данных SDA (вывод 5).

Линия SDA является двунаправленной. Микросхема передает данные по SDA либо для подтверждения приема данных от ведущего (master) устройства (сигнал ACK), либо во время операции чтения. Линия SDA в режиме порта I²C имеет конфигурацию с открытым стоком, которая требует внешний подтягивающий к высокому логическому уровню резистор сопротивлением 2 кОм. Операция записи или чтения начинается, когда линия SDA переключается в низкий логический уровень при высоком уровне на линии SCL, как показано на рисунках 3.6 и 3.7.

Изменение сигнала SDA разрешено только при низком уровне сигнала SCL, за исключением тех случаев, когда возникает условие «СТАРТ» или «СТОП», как показано на рисунках 3.6 и 3.7. Первые 8 бит слова данных состоят из адреса устройства и бита чтения/записи R/W#. Адрес устройства состоит из внутреннего встроенного адреса (0х04) и адреса, заданного двумя выводами 4 (ADDR1) и 7 (ADDR0) (см. таблицу 3.5).

Таблица 3.5 - Адреса I²C

ADDR1	ADDR0	Адреса ведомого (slave)
0	0	0x04
0	1	0x24
1	0	0x44
1	1	0x64

3.7 Запись по **I**²C

Два разряда адреса позволяют использовать в системе четыре микросхемы 1273HA084. Инициализация операции записи в микросхеме включает в себя следующие шаги (см. рисунок 3.6):

- отправка условия «СТАРТ»;
- отправка адреса устройства с установкой бита R/W# в низкий логический уровень. Микросхема отвечает сигналом подтверждения, чтобы сообщить об адресации к устройству;
- отправка второго кадра, указывающего микросхеме, в какой регистр должна быть сделана запись. Микросхема передает второй сигнал подтверждения;
- отправка третьего кадра с восемью разрядами данных, которые необходимо записать в регистр. Микросхема передает третий сигнал подтверждения;
 - отправка условия «СТОП» для завершения передачи данных.

Таблица 3.6 - Запись одиночного слова данных по I²C

S	Адрес ИС, $R/W# = 0$	AS	Адрес регистра	AS	Слово данных	AS	P	
	Примечание — S	- Стар	товый бит, Р - Сто	повый	бит, АМ - Подтв	ерждені	ие от	
ведущего (master), AS - Подтверждение от ведомого (slave).								

Т а б л и ц а 3.7 - Запись данных в пакетном режиме по I^2C

S	Адрес ИС,	AS	Адрес	AS	Слово	AS	Слово	AS	Слово	AS	P
	R/W# = 0		регистра		данных		данных		данных		
	-				1		2		N		
	Примечани	е —	S - Старто	вый	бит, Р - С	гопов	вый бит, А	M - I	Тодтвержд	ение (ОТ
ведущего (master), AS - Подтверждение от ведомого (slave).											

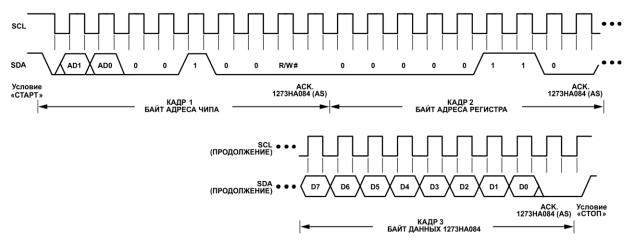


Рисунок 3.6 - Формат записи по I^2C

3.8 Чтение по І²С

Для выполнения операции чтения требуется сначала произвести запись, чтобы указать нужный регистр, а после этого выполнить чтение данных. Для этого нужно выполнить следующие шаги (см. рисунок 3.7):

- отправка условия «СТАРТ», за которым следует кадр адреса устройства с низким уровнем бита R/W#. и кадр адреса регистра. Микросхема отвечает сигналом подтверждения;
- повторная отправка условия «СТАРТ». Далее следует кадр адреса устройства с высоким уровнем бита R/W#. В следующем кадре микросхема выводит данные регистра на линию SDA;
 - отправка условия «СТОП» для завершения операции чтения.

Таблица 3.8 - Чтение одиночного слова данных по I²C

S	Адрес ИС,	AS	Адрес	AS	S	Адрес ИС,	AS	Слово	AM	P
	R/W# = 0		регистра			R/W#=1		данных		
ВАП	Примечание — S - Стартовый бит, P - Стоповый бит, AM - Подтверждение от									
ВСД	ведущего (master), AS - Подтверждение от ведомого (slave).									

Таблица 3.9 - Чтение данных в пакетном режиме по I²C

S	1	Адрес	A	Адрес	A	S	Адрес	A	Слово	A	Слово	A	Слово	A	P
	I	ИС,	S	регистр	S		ИС,	S	данных	M	данных	M	данных	M	
	F	R/W#		a			R/W#		1		2		N		
	=	= 0					= 1								

 Π р и м е ч а н и е - S - Стартовый бит, P - Стоповый бит, AM - Подтверждение от ведущего (master), AS - Подтверждение от ведомого (slave).

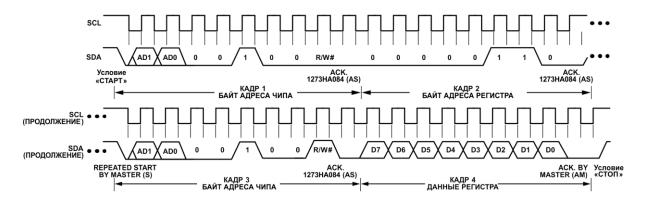


Рисунок 3.7 - Формат чтения по I^2C

3.9 Порт управления SPI

Микросхема 1273HA084 имеет порт управления SPI, который позволяет осуществлять программирование и чтение данных внутренних регистров управления.

По умолчанию микросхема находится в режиме I²C. Чтобы войти в режим управления по SPI, нужно выполнить три пустые операции записи через порт SPI (микросхема не дает подтверждения для этих трех операций), как показано на рисунке 3.8. Начиная с четвертого цикла записи, данные могут быть записаны или считаны из микросхемы. Микросхема может выйти из режима управления по SPI только по сигналу PU/RST#, который инициализируется при подаче питания на микросхему.

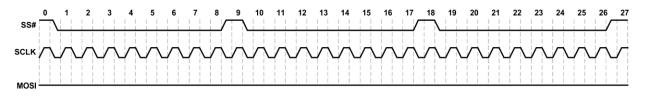


Рисунок 3.8 - Последовательность сигналов для инициализации порта SPI

Порт управления по SPI микросхемы – это 4-проводный последовательный интерфейс. Информация передается в виде 24-разрядных слов данных. Сигналы SS# и SCLK могут быть асинхронны относительно частоты дискретизации микросхемы. В таблице 3.10 показан формат байта адреса при использовании SPI.

Первый байт слова данных является глобальным адресом чипа с битом чтения/записи. Для микросхемы адрес 0x06 сдвинут влево на один разряд изза бита R/W#. Второй байт – это адрес регистра микросхемы, третий байт – это данные (рисунки 3.9 и 3.10).

Таблица 3.10 - Формат байта адреса чипа с битом R/W#.

Разряд 0	Разряд 1	Разряд 2	Разряд 3	Разряд 4	Разряд 5	Разряд 6	Разряд 7
0	0	0	0	1	1	0	R/W#

Рисунок 3.9 - Временная диаграмма сигналов при операции записи по SPI

Во время операции чтения из микросхемы вывод MISO/SDA/SA находится в третьем состоянии до начала третьего байта, когда на вывод поступают данные (см. рисунок 3.10). Вывод MISO/SDA/SA находится в третьем состоянии на протяжении всего остального времени, что позволяет подключить его к шине, соединяющий несколько устройств.

Младший бит первого байта при передаче данных по SPI - это разряд R/W#. Он определяет операцию чтения (логический уровень 1) или записи (логический уровень 0). См. таблицу 3.10.

Рисунок 3.10 - Временная диаграмма сигналов при операции чтения по SPI

3.10 Чтение и запись по SPI в пакетном режиме

Через порт SPI можно осуществлять чтение и запись в пакетном режиме. Это делается путем отправки байта с адресом чипа с битом R/W#, далее выполняется отправка первого адреса регистра, в который будет производиться запись или чтение. Далее, до тех пор, пока удерживается низкий уровень сигнала SS# (вывод 7), регистры могут быть последовательно считаны или записаны, при подаче тактового сигнала SCLK.

Для программирования регистров по SPI в пакетном режиме нужно выполнить следующие действия:

- отправка байта адреса с битом R/W# равного логическому нулю (операция записи);
 - отправка адреса первого регистра;
 - отправка значений регистров;

- переключение вывода SS# (вывод 7) для окончания передачи;
- чтение в пакетном режиме для того, чтобы убедиться, что запись регистров прошла успешно.

3.11 Питание и опорное напряжение

Напряжение питания аналоговой части микросхемы 5,0 B, напряжение питания цифровой части от 2,5 B, напряжение питания цифровых входных и выходных портов 3,3 B или 5,0 B.

Для защиты микросхемы от помех в цепи питания надо шунтировать выводы питания микросхемы керамическими чип конденсаторами емкостью 100 нФ, расположенными как можно ближе к выводам. Также нужно установить электролитические конденсаторы, емкостью не менее 22 мкФ для каждой шины питания.

Микросхема 1273HA084 включает в себя драйвер линейного стабилизатора, которому требуется внешний силовой транзистор и шунтирующий конденсатор для построения стабилизатора с программируемым выходным напряжением (биты VREG_CTRL регистра DAC_CTRL2). Рекомендуемая схема стабилизатора показана на рисунке 3.4.

Если драйвер стабилизатора не используется, то нужно подключить выводы VSUPPLY и VDRIVE к выводам #GND и оставить вывод VSENSE неподключенным.

Все цифровые входы и выходы совместимы с логическими уровнями ТТЛ и КМОП.

Внутреннее опорное напряжение датчика температуры выводится на вывод TS_REF. К этому выводу необходимо подключить конденсаторы емкостью $10 \text{ мк}\Phi$ и $100 \text{ н}\Phi$, соединенными параллельно как можно ближе к микросхеме.

Схема внутреннего источника опорного напряжения (ИОН), основана на ширине запрещенной зоны. ИОН задает напряжение средней точки ЦАП и имеет выход на вывод СМ. ИОН может быть отключен в регистре PLL_CLK_CTRL1 установкой бита VREF_EN в 0b0, при этом вывод СМ может управляться от внешнего источника.

К выводу СМ требуется подключить конденсаторы емкостью 10 мкФ и 100 нФ, соединенные параллельно, как можно ближе к микросхеме.

Опорное напряжение на выводе СМ может использоваться для подачи смещения на внешний операционный усилитель (ОУ), который буферизует выходные сигналы. Чтобы получить малошумящий источник с низким сопротивлением для подключения к внешним цепям, необходимо изолировать вывод СМ от внешней цепи с помощью малошумящего ОУ.

3.12 Последовательный порт ввода данных

Последовательный порт ввода данных имеет восемь линий данных DSDATAх (по два канала на каждую линию), общий сигнал кадровой синхронизации (DLRCLK) и общий тактовый сигнал последовательной загрузки данных (DBCLK). Временные диаграммы сигналов последовательного порта в стерео режимах показаны на рисунке 3.11.

По умолчанию последовательный порт работает в режиме I²S; он устанавливается при включении питания и сбросе. Порт может быть запрограммирован в режимы работы с выравниванием данных по левому и по правому краю (24- и 16-разрядных данных), с помощью битов SDATA_FMT регистра DAC_CTRL0. Для выбора режима стерео и TDM служат биты SAI регистра DAC_CTRL0. Полярность вывода DLRCLK программируется с помощью бита LRCLK_POL регистра DAC_CTRL1, что позволяет легко менять местами каналы.

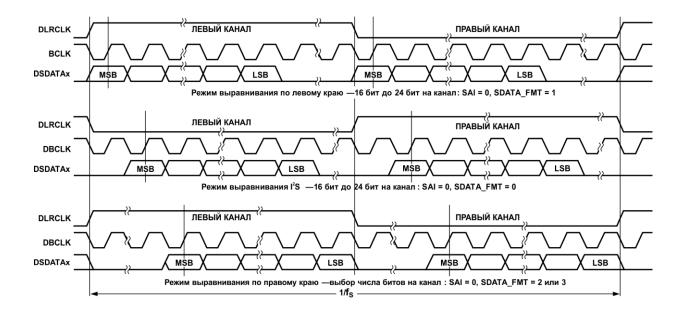


Рисунок 3.11 - Временные диаграммы сигналов последовательного порта в стерео режимах

Вывод DBCLK позволяет захватывать данные по переднему или заднему фронту тактового сигнала. Бит BCLK_EDGE регистра DAC_CTRL1 служит для выбора активного фронта.

Последовательный порт может быть установлен в режим ведущего (master) и режим ведомого (slave) путем установки бита SAI_MS регистра DAC_CTRL1. По умолчанию последовательный порт находится в режиме ведомого (slave).

3.13 Режимы мультиплексирования с разделением по времени (TDM)

Последовательный порт данных микросхемы 1273НА084 поддерживает несколько режимов мультиплексирования с разделением по времени (TDM). Микросхема 1273НА084 поддерживает работу с одной линией данных (TDM16), с двумя линиями данных (TDM8), с четырьмя линиями данных (TDM4) или с восьмью линиями данных (TDM2). Сигнал кадровой синхронизации DLRCLK может работать как в режиме коротких импульсов длительностью, равной одному периоду тактового сигнала, так и в режиме с коэффициентом заполнения импульса 50 %. Для каждого режима можно выбрать длительность передачи данных 16 или 32 такта на канал.

Назначение выводов последовательного порта определяется в зависимости от выбранного режима TDM (см. таблицу 3.11).

Таблица 3.11 - Назначение выводов последовательного порта в зависимости от режима TDM

	Стерео	Режим TDM4	Режим TDM8	Режим TDM16
C	режимы	(SAI = 2)	(SAI = 3)	(SAI = 4)
Сигнал	(SAI = 0 или	,		, ,
	SAI = 1			
	Канал 1/Канал			
DSDATA1	2	Каналы 1 - 4	Каналы 1 - 8	Каналы 1 - 12
DSDITIT	ввод данных	ввод данных	ввод данных	ввод данных
	Канал 3/Канал	Каналы 5 - 8	Каналы 9 - 12	
DSDATA2	4	ввод данных	ввод данных	Не используется
	ввод данных	ввод данных	ввод данных	
	Канал 5/Канал	Каналы 9 - 12		
DSDATA3	6	ввод данных	Не используется	Не используется
	ввод данных	-7474-		
	Канал 7/Канал	II	TT	TT
DSDATA4	8	Не используется	Не используется	Не используется
	ввод данных Канал 9/Канал			
DSDATA5	10	Не используется	Не используется	Не используется
DSDATAS	ввод данных	The mellosibs yellex	пс используется	пе используется
	Канал			
DSDATA6	11/Канал 12	Не используется	Не используется	Не используется
	ввод данных	,	,	
	Канал			
DSDATA7	13/Канал 14	Не используется	Не используется	Не используется
	ввод данных			
	Канал			
DSDATA8	15/Канал 16	Не используется	Не используется	Не используется
	ввод данных			
	DLRCLK вход	TDM кадр. синх.	TDM кадр. синх.	TDM кадр. синх.
DLRCLK	/ DLRCLK	вход /	вход /	вход/
	выход	TDM кадр. синх.	TDM кадр. синх.	TDM кадр. синх.
	Былод	ВЫХОД	ВЫХОД	ВЫХОД
	DBCLK вход /	TDM DBCLK	TDM DBCLK	TDM DBCLK
DBCLK	DBCLK выход	вход / TDM DBCLK	вход/ TDM DBCLK	вход/ TDM DBCLK
	DDCLK BBIXUA	выход	ВЫХОД	выход
Максимальная		ылод	рыход	ылод
частота	192 кГц	192 кГц	96 кГц	48 кГц
дискретизации				-5
*	тонно САГбит		C CTDI ()	1

Примечание - SAI-биты [5:3] регистра DAC_CTRLO.

Последовательность передачи данных в режиме TDM начинается с положительного фронта сигнала DLRCLK. В режиме одиночного импульса сигнал DLRCLK должен находиться в высоком логическом уровне не менее одного периода сигнала DBCLK. Период сигнала DLRCLK равен $1/f_s$, а количество тактов сигнала DBCLK зависит от числа тактов на один кадр

данных канала и числа каналов, объединенных на одной линии DSDATA. В кадре данных одного канала длительностью 32 такта DBCLK слово данных записывается на второй такт DBCLK, начиная со старшего разряда. Кадры данных каналов ЦАП следуют друг за другом, как показано на рисунке 3.12.

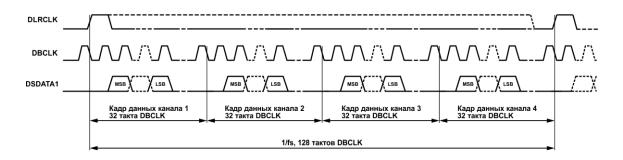


Рисунок 3.12 — Временная диаграмма сигналов при загрузке данных в формате TDM4 в режиме одиночного импульса сигнала DLRCLK

Отличие режима с коэффициентом заполнения 50 % сигнала DLRCLK заключается в том, что уровень логического нуля и логической единицы должен удерживаться в течение равного количества тактов. Последовательность передачи начинается также с положительного фронта сигнала DLRCLK. Временная диаграмма данного режима представлена на рисунке 3.13.

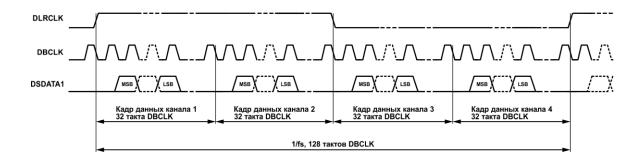


Рисунок 3.13 — Временная диаграмма сигналов при загрузке данных в формате TDM4 в режиме с коэффициентом заполнения 50 % сигнала DLRCLK

3.14 Датчик температуры

Микросхема 1273НА084 имеет встроенный датчик температуры, с помощью которого пользователь может считывать значение температуры кристалла микросхемы. Рабочий диапазон датчика температуры от минус 60 до плюс 140 °C, шаг измерений 1 °C.

Регистр PDN_THRMSENS_CTRL_1 служит для управления настройками датчика. По умолчанию датчик температуры всегда включен, для отключения датчика температуры нужно установить бит TS_PDN в 0b1. Датчик температуры имеет два режима работы: циклический и одиночный. Режим измерения датчика температуры задается с помощью бита THRM_MODE. По умолчанию THRM_MODE = 0b1 (установлен режим одиночного измерения).

В режиме одиночного измерения нужно записать 0b0 в бит THRM_GO, после этого переписать его в 0b1, это приведет к сбросу датчика температуры и запуску измерения. После окончания преобразования результат измерения будет записан в регистр THRM TEMP STAT.

В циклическом режиме работы измерение температуры происходит с частотой, задаваемой битами THRM_RATE, с интервалом между измерениями от 0,5 до 4 с. Более высокие частоты преобразования возможны при использовании режима одиночного измерения.

Когда результат измерения температуры записывается в регистр THRM_TEMP_STAT, данные могут быть переведены в градусы Цельсия. Для этого нужно выполнить следующие шаги:

- перевести двоичные или шестнадцатеричные данные, считанные из регистра THRM_TEMP_STAT, в десятичный формат;
- из переведенного значения THRM_TEMP_STAT вычесть 60. Получим значение температуры кристалла в градусах Цельсия.

4 Описание регистров управления

Список регистров управления приведен в таблице 4.1.

Таблица 4.1 – Список регистров назначения

Адрес регистра	Имя регистра	Биты	Бит 7	Бит б	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Значение после сброса	RW
1	2	3	4	5	6	7	8	9	10	11	12	13
0x00	PLL_CLK_CTRL0	[7:0]	PL	LIN	XTAI	_SET	SOFT_RST	MCS	S	PUP	0x00	RW
0x01	PLL_CLK_CTRL1	[7:0]	LOPWR	L_MODE	MCLK	O_SEL	PLL_MUTE	PLL_LOCK	VREF_EN	CLK_SEL	0x2A	RW
0x02	PDN_THRMSENS_CTRL_1	[7:0]	THRM	_RATE	THRM_MODE	THRM_GO	RESERVED	TS_PDN	PLL_PDN	VREG_PDN	0xA0	RW
0x03	PDN_CTRL2	[7:0]	DAC08_PDN	DAC07_PDN	DAC06_PDN	DAC05_PDN	DAC04_PDN	DAC03_PDN	DAC02_PDN	DAC01_PDN	0x00	RW
0x04	PDN_CTRL3	[7:0]	DAC16_PDN	DAC15_PDN	DAC14_PDN	DAC13_PDN	DAC12_PDN	DAC11_PDN	DAC10_PDN	DAC09_PDN	0x00	RW
0x05	THRM_TEMP_STAT	[7:0]				T	EMP				0x00	R
0x06	DAC_CTRL0	[7:0]	SDAT	A_FMT		SAI		FS		MMUTE	0x01	RW
0x07	DAC_CTRL1	[7:0]	BCLK_GEN	LRCLK_MODE	LRCLK_POL	SAI_MSB	RESERVED	BCLK_RATE	BCLK_EDGE	SAI_MS	0x00	RW
0x08	DAC_CTRL2	[7:0]	RESERVED	VREG.	_CTRL	BCLK_TDMC	DAC_POL	AUTO_MUTE_EN	DAC_OSR	DE_EMP_EN	0x06	RW
0x09	DAC_MUTE1	[7:0]	DAC08_MUTE	DAC07_MUTE	DAC06_MUTE	DAC05_MUTE	DAC04_MUTE	DAC03_MUTE	DAC02_MUTE	DAC01_MUTE	0x00	RW
0x0A	DAC_MUTE2	[7:0]	DAC16_MUTE	DAC15_MUTE	DAC14_MUTE	DAC13_MUTE	DAC12_MUTE	DAC11_MUTE	DAC10_MUTE	DAC09_MUTE	0x00	RW
0x0B	DACMSTR_VOL	[7:0]				DACM	STR_VOL				0x00	RW
0x0C	DAC01_VOL	[7:0]				DAC	01_VOL				0x00	RW
0x0D	DAC02_VOL	[7:0]				DAC	02_VOL				0x00	RW
0x0E	DAC03_VOL	[7:0]				DAC	03_VOL				0x00	RW
0x0F	DAC04_VOL	[7:0]				DAC	04_VOL				0x00	RW
0x10	DAC05_VOL	[7:0]				DAC	05_VOL				0x00	RW
0x11	DAC06_VOL	[7:0]				DAC	06_VOL				0x00	RW
0x12	DAC07_VOL	[7:0]				DAC	07_VOL				0x00	RW
0x13	DAC08_VOL	[7:0]				DAC	08_VOL				0x00	RW
0x14	DAC09_VOL	[7:0]				DAC	09_VOL				0x00	RW
0x15	DAC10_VOL	[7:0]				DAC	10_VOL				0x00	RW
0x16	DAC11_VOL	[7:0]				DAC	11_VOL				0x00	RW
0x17	DAC12_VOL	[7:0]				DAC	12_VOL				0x00	RW
0x18	DAC13_VOL	[7:0]		DAC13_VOL							0x00	RW
0x19	DAC14_VOL	[7:0]				DAC	14_VOL				0x00	RW
0x1A	DAC15_VOL	[7:0]		DAC15_VOL (0x00	RW
1B	DAC16_VOL	[7:0]				DAC	16_VOL				0x00	RW

Окончание таблицы 4.1

1	2	3	4	5	6	7	8	9	10	11	12	13
0x1C	CM_SEL_PAD_STRGTH	[7:0]	RESERVED	RESERVED	PAD_DRV	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	0x02	RW
0x1D	DAC_POWER1	[7:0]	DAC04_P	OWER	DAC03_l	POWER	DAC0	2_POWER	DAC0	1_POWER	0xAA	RW
0x1E	DAC_POWER2	[7:0]	DAC08_P	OWER	DAC07_1	POWER	DAC0	6_POWER	DAC0	5_POWER	0xAA	RW
0x1F	DAC_POWER3	[7:0]	DAC12_P	OWER	DAC11_l	POWER	DAC1	0_POWER	DAC0	9_POWER	0xAA	RW
0x20	DAC_POWER4	[7:0]	DAC16_P	OWER	DAC15_l	POWER	DAC1	4_POWER	DAC1	3_POWER	0xAA	RW

4.1 PLL_CLK_CTRL0 – регистр управления тактовым сигналом и схемой ФАПЧ

Адрес регистра: 0х00. Состояние после сброса: 0х00.

Таблица 4.2 - Описание битов регистра PLL_CLK_CTRL0

Номер	Имя бита	Установк	Описание	Сброс	Доступ
бита		И			
1	2	3	4	5	5
[7:6]	PLLIN		Выбор входного сигнала схемы	0x0	RW
			ФАПЧ. Выбор вывода		
			MCLKI/XTALI или DLRCLK в		
			качестве входного для схемы ФАПЧ.		
		00	MCLKI или XTALI.		
		01	DLRCLK.		
		10	Зарезервировано.		
		11	Зарезервировано.		
[5:4]	XTAL_SET		Настройки кварцевого генератора.	0x0	RW
			Статус вывода XTALO.		
		00	Кварцевый генератора включен.		
		01	Зарезервировано.		
		10	Зарезервировано.		
		11	Вывод XTALO выключен.		
3	SOFT_RST		Управление программным сбросом.	0x0	RW
			Этот бит сбрасывает все внутренние		
			блоки, кроме интерфейса I ² C/SPI. Все		
			регистры управления сбрасываются в		
			значения по умолчанию, кроме		
			регистров PLL_CLK_CTRL0 и		
			PLL_CLK_CTRL1.		
		0	Нормальная работа.		
		1	Устройство в состоянии сброса.		
[2:1]	MCS		Выбор частоты главного тактового	0x0	RW
			сигнала. Функционирование вывода		
			MCLKI/XTALI (схема ФАПЧ		
			активна), настройки главной		
			тактовой частоты. Возможны		
			следующие значения для диапазона		
			частоты fs от 32 до 48 кГц. См.		
			таблицу 3.2 при использовании		
			других значений f_S .		
		00	$256 \times f_{S}$ MCLK (44,1 кГц или 48 кГц).		
		01	$384 \times f_S$ MCLK (44,1 кГц или 48 кГц).		
		10	512 × f _S MCLK (44,1 кГц или 48 кГц).		
		11	768 × f _S MCLK (44,1 кГц или 48 кГц).		

1	2	3	4	5	5
	PUP		Общее включение питания.	0x0	RW
			Этот бит должен быть установлен		
			в 0b1 при первой записи в регистр		
			для включения питания		
			микросхемы.		
		0	Питание выключить.		
		1	Питание включить.		

4.2 PLL_CLK_CTRL1 – регистр управления тактовым сигналом и схемой ФАПЧ

Адрес регистра: 0х01. Состояние после сброса: 0х2А.

Таблица 4.3 - Описание битов регистра PLL_CLK_CTRL1

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
1	2	3	4	5	6
[7:6]	LOPWR_MODE		Общая настройка режима	0x0	RW
			потребляемой		
			мощности/характеристик		
			сигнала. Эти биты		
			устанавливают потребляемую		
			мощность и уровень качества		
			сигнала для всех 16 каналов		
			ЦАП одновременно		
			см. подраздел 3.2.		
		00	Настройки регистра,		
			установленные по I^2 C/SPI.		
		01	Зарезервировано.		
		10	Низкая потребляемая		
			мощность.		
		11	Минимальная потребляемая		
			мощность.		
[5:4]	MCLKO_SEL		Выходная частота MCLKO.	0x2	RW
			Выбор частоты для вывода		
			MCLKO см. подраздел 3.3.		
		00	$MCLKO = $ от 4 до 6 $M\Gamma$ ц		
			масштабируется по fs.		
		01	$MCLKO = $ от 8 до 12 $M\Gamma$ ц		
			масштабируется по fs.		
		10	MCLKO = буферизованный		
			MCLKI.		
		11	Вывод MCLKO выключен.		

1	2	3	4	5	6
3	PLL_MUTE		Автоматическое выключение	0x1	RW
			звука от сигнала установки		
			синхронизации схемы ФАПЧ.		
			Этот бит реализует функцию		
			автоматического выключения		
			звука при потере		
			синхронизации схемы ФАПЧ.		
		0	Автоматическое выключение		
			звука - активно.		
		1	Автоматическое выключение		
			звука - неактивно.		
2	PLL_LOCK		Индикатор синхронизации	0x0	R
			схемы ФАПЧ.		
		0	Схема ФАПЧ не		
			синхронизирована.		
		1	Схема ФАПЧ		
			синхронизирована.		
1	VREF_EN		Включение внутреннего ИОН.	0x1	RW
			См. подраздел 3.11.		
		0	Выключен.		
		1	Включен.		
0	CLK_SEL		Выбор источника тактового	0x0	RW
			сигнала микросхемы.		
		0	MCLK от схемы ФАПЧ.		
		1	MCLK от вывода		
			MCLKI/XTALI.		

4.3 PDN_THRMSENS_CTRL_1 – регистр управления датчиком температуры и управления питанием блоков

Адрес регистра: 0х02. Состояние после сброса: 0хА0.

Таблица 4.4 - Описание битов регистра PDN_THRMSENS_CTRL_1

Номер бита	Имя бита	Установки	Описание	Сброс	Доступ
1	2	3	4	5	6
[7:6]	THRM_RATE	00 01 10 11	Интервал времени между преобразованиями. Когда ТНКМ_МОDE = 0, разряды ТНКМ_КАТЕ управляют временным интервалом между измерениями температуры. Интервал 4 с. Интервал 1 с. Интервал 2 с.	0x2	RW
5	THRM_MODE	0	Выбор циклического режима или режима одиночного преобразования. Циклический режим. Режим одиночного преобразования.	0x1	RW
4	THRM_GO	0 1	Управление режимом одиночного преобразования. В режиме одиночного преобразования (THRM_MODE = 0b1) в разряд ТНRM_GO нужно записать 0b0, после чего нужно записать 0b1. Эта последовательность запускает одиночное измерение температуры. Данные, полученные в результате измерения температуры, будут доступны через 120 мс после записи 0b1 в этот бит. Сброс. Измерение температуры.	0x0	RW
3	Зарезервировано	_	Зарезервировано.	0x0	R
2	TS_PDN	0 1	Включение датчика температуры. Датчик температуры включен. Датчик температуры выключен.	0x0	RW

1	2	3	4	5	6
1	PLL_PDN		Включение схемы ФАПЧ.	0x0	RW
		0	Схема ФАПЧ включена.		
		1	Схема ФАПЧ выключена.		
0	VREG_PDN		Включение драйвера	0x0	RW
			линейного стабилизатора		
			напряжения.		
		0	Стабилизатор напряжения		
			включен.		
		1	Стабилизатор напряжения		
			выключен.		

4.4 PDN_CTRL2 – регистр управления питанием каналов ЦАП

Адрес регистра: 0х03. Состояние после сброса: 0х00.

Таблица 4.5 - Описание битов регистра PDN_CTRL2

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
7	DAC08_PDN		Включение канала 8.	0x0	RW
		0	Канал 8 включен.		
		1	Канал 8 выключен.		
6	DAC07_PDN		Включение канала 7.	0x0	RW
		0	Канал 7 включен.		
		1	Канал 7 выключен.		
5	DAC06_PDN		Включение канала 6.	0x0	RW
		0	Канал 6 включен.		
		1	Канал 6 выключен.		
4	DAC05_PDN		Включение канала 5.	0x0	RW
		0	Канал 5 включен.		
		1	Канал 5 выключен.		
3	DAC04_PDN		Включение канала 4.	0x0	RW
		0	Канал 4 включен.		
		1	Канал 4 выключен.		
2	DAC03_PDN		Включение канала 3.	0x0	RW
		0	Канал 3 включен.		
		1	Канал 3 выключен.		
1	DAC02_PDN		Включение канала 2.	0x0	RW
		0	Канал 2 включен.		
		1	Канал 2 выключен.		
0	DAC01_PDN		Включение канала 1.	0x0	RW
		0	Канал 1 включен.		
		1	Канал 1 выключен.		

4.5 PDN_CTRL3 – регистр управления питанием каналов ЦАП

Адрес регистра: 0х04. Состояние после сброса: 0х00.

Таблица 4.6 - Описание битов регистра PDN_CTRL3

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
7	DAC16_PDN		Включение канала 16.	0x0	RW
		0	Канал 16 включен.		
		1	Канал 16 выключен.		
6	DAC15_PDN		Включение канала 15.	0x0	RW
		0	Канал 15 включен.		
		1	Канал 15 выключен.		
5	DAC14_PDN		Включение канала 14.	0x0	RW
		0	Канал 14 включен.		
		1	Канал 14 выключен.		
4	DAC13_PDN		Включение канала 13.	0x0	RW
		0	Канал 13 включен.		
		1	Канал 13 выключен.		
3	DAC12_PDN		Включение канала 12.	0x0	RW
		0	Канал 12 включен.		
		1	Канал 12 выключен.		
2	DAC11_PDN		Включение канала 11.	0x0	RW
		0	Канал 11 включен.		
		1	Канал 11 выключен.		
1	DAC10_PDN		Включение канала 10.	0x0	RW
		0	Канал 10 включен.		
		1	Канал 10 выключен.		
0	DAC09_PDN		Включение канала 9.	0x0	RW
		0	Канал 9 включен.		
		1	Канал 9 выключен.		

4.6 THRM_TEMP_STAT – регистр результата измерения температуры

Адрес регистра: 0х05. Состояние после сброса: 0х00.

Таблица 4.7 - Описание битов регистра THRM_TEMP_STAT

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	TEMP		Результат измерения температуры.	0x00	R
			Диапазон от минус 60 до 140 °C с		
			шагом 1°С. Для преобразования		
			кода ТЕМР в значение температуры		
			используется выражение		
			(TEMP – 60).См. подраздел 3.14.		

4.7 DAC_CTRL0 - регистр управления

Адрес регистра: 0х06. Состояние после сброса: 0х01.

Таблица 4.8 - Описание битов регистра DAC_CTRL0

Номер бита	Имя бита	Установки	Описание	Сброс	Доступ
1	2	3	4	5	6
[7:6]	SDATA_FMT	00	Формат SDATA. Используется только когда $SAI = 000$. Режим I^2S .	0x0	RW
		01 10	Режим выравнивания данных по левому краю. Режим выравнивания 24-разрядных данных по		
		11	правому краю. Режим выравнивания 16-разрядных данных по правому краю.		
[5:3]	SAI	000	Режим работы последовательного порта. Если SAI = 000, то биты SDATA_FMT устанавливают формат данных SDATA. Стерео (I^2S , выравнивание данных по левому краю, выравнивание данных по	0x0	RW
		001 010 011 100 101 110 111	правому краю). TDM2 = восемь линий. TDM4 = четыре линии. TDM8 = две линии. TDM16 = одна линия (48 кГц) Зарезервировано. Зарезервировано. Зарезервировано.		
[2:1]	FS	00 01 10 11	Выбор частоты дискретизации. 32 кГц/44,1 кГц/48 кГц. 64 кГц/88,2 кГц/96 кГц. 128 кГц/176,4 кГц/192 кГц. 128 кГц/176,4 кГц/192 кГц. Низкая задержка распространения.	0x0	RW
0	MMUTE	0	Выключение звука всех каналов ЦАП. Звук включен. Звук выключен.	0x1	RW

4.8 DAC_CTRL1 - регистр управления

Адрес регистра: 0х07. Состояние после сброса: 0х00.

Таблица 4.9 -Описание битов регистра DAC_CTRL1

Номер бита	Имя бита	Установки	Описание	Сброс	Доступ
1	2	3	4	5	6
7	BCLK_GEN	0 1	Внутреннее формирование сигнала DBCLK. Если схема ФАПЧ синхронизируется от вывода DLRCLK, то микросхему 1273HA084 можно запустить без внешнего тактового сигнала последовательной загрузки данных. Внешний сигнал DBCLK. Внутреннее формирование	0x0	RW
6	LRCLK_MODE	0	сигнала DBCLK. Выбор режима сигнала DLRCLK. (Доступен только в режиме TDM.) Режим с коэффициентом заполнения импульса 50 % сигнала DLRCLK. Режим коротких импульсов.	0x0	RW
5	LRCLK_POL	0	Полярность сигнала DLRCLK. Позволяет менять местами данные между каналами. Левый/Нечетные каналы соответствуют низкому уровню сигнала DLRCLK. Левый/Нечетные каналы соответствуют высокому уровню сигнала DLRCLK.	0x0	RW
4	SAI_MSB	0	Позиция старшего разряда. Старший разряд первый в сигнале данных DSDATAx. Младший разряд первый в сигнале данных DSDATAx.	0x0	RW
3	Зарезервировано	_	Зарезервировано	0x0	R

1	2	3	4	5	6
2	BCLK_RATE		Количество тактов сигнала	0x0	RW
			последовательной загрузки		
			данных на один слот канала.		
			Используется только для		
			генерирования тактов сигнала		
			последовательной загрузки		
			данных в режиме работы		
			ведущего (master)		
			$(SAI_MS = 1).$		
		0	32 такта на кадр.		
		1	16 тактов на кадр.		
1	BCLK_EDGE		Установка активного фронта	0x0	RW
			сигнала DBCLK.		
		0	Захват данных по переднему		
			фронту.		
		1	Захват данных по заднему		
			фронту.		
0	SAI_MS		Выбор режима ведущего	0x0	RW
			(master) или ведомого (slave)		
			последовательного		
			интерфейса.		
		0	DLRCLK/DBCLK режим		
			ведомого (slave).		
		1	DLRCLK/DBCLK режим		
			ведущего (master).		

4.9 DAC_CTRL2 - регистр управления

Адрес регистра: 0х08. Состояние после сброса: 0х06.

Таблица 4.10 - Описание битов регистра DAC_CTRL2

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
1	2	3	4	5	6
7	Зарезервировано	_	Зарезервировано	0x0	R
[6:5]	VREG_CTRL		Выбор выходного	0x0	RW
			напряжения линейного		
			стабилизатора.		
		00	Выходное		
			напряжение = 2,5 В.		
		01	Выходное		
			напряжение = 2,75 В.		
		10	Выходное		
			напряжение = 3,0 В.		
		11	Выходное		
			напряжение = 3,3 В.		

1	2	3	4	5	6
4	BCLK_TDMC		Количество тактов сигнала	0x0	RW
			последовательной загрузки		
		0	данных в режиме TDM.		
		0	32 такта сигнала ВСЬК на		
		1	слот канала.		
		1	16 тактов сигнала BCLK на		
2	D. I. C. DOI		слот канала.	0.0	DIII
3	DAC_POL	0	Полярность выходов ЦАП.	0x0	RW
		0	Не инвертированный сигнал		
		1	на выходе ЦАП.		
		1	Инвертированный сигнал на		
2	ALITEO MILITEE EN		выходе ЦАП.	0 1	DIV
2	AUTO_MUTE_EN		Функция автоматического	0x1	RW
			выключения звука ЦАП, при		
			получении		
			последовательности из 1024		
		0	нулевых слов данных.		
		0	Функция автоматического		
			выключение		
			звука - выключена.		
		1	Функция автоматического		
			выключение		
			звука - включена.		
1	DAC_OSR		Выбор частоты избыточной	0x1	RW
			дискретизации ЦАП.		
		0	Частота избыточной		
			дискретизации ЦАП $256 \times f_S$.		
		1	Частота избыточной		
			дискретизации ЦАП $128 \times f_s$.		
0	DE_EMP_EN		Коррекции предыскажений.	0x0	RW
			(только при частоте		
			дискретизации 48 кГц).		
		0	Коррекция предыскажений		
			выключена.		
		1	Коррекция предыскажений		
			включена.		1

4.10 DAC_MUTE1 – регистр выключения звука каналов ЦАП

Адрес регистра: 0х09. Состояние после сброса: 0х00.

Таблица 4.11 - Описание битов регистра DAC_MUTE1

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита	DACOO MUTEE		П	0.0	DIII
7	DAC08_MUTE		Плавное выключение звука 8	0x0	RW
			канала.		
		0	Звук включен.		
	D 4 C05 1 CUENT	1	Звук выключен.	0.0	DIII
6	DAC07_MUTE		Плавное выключение звука 7	0x0	RW
			канала.		
		0	Звук включен.		
	D + 60 t 1 57 7777	1	Звук выключен.	0.0	
5	DAC06_MUTE		Плавное выключение звука 6	0x0	RW
			канала.		
		0	Звук включен.		
		1	Звук выключен.		
4	DAC05_MUTE		Плавное выключение звука 5	0x0	RW
			канала.		
		0	Звук включен.		
		1	Звук выключен.		
3	DAC04_MUTE		Плавное выключение звука 4	0x0	RW
			канала.		
		0	Звук включен.		
		1	Звук выключен.		
2	DAC03_MUTE		Плавное выключение звука 3	0x0	RW
			канала.		
		0	Звук включен.		
		1	Звук выключен.		
1	DAC02_MUTE		Плавное выключение звука 2	0x0	RW
			канала.		
		0	Звук включен.		
		1	Звук выключен.		
0	DAC01_MUTE		Плавное выключение звука 1	0x0	RW
			канала.		
		0	Звук включен.		
		1	Звук выключен.		

4.11 DAC_MUTE2 – регистр выключения звука каналов ЦАП

Адрес регистра: 0х09. Состояние после сброса: 0х00.

Таблица 4.12 - Описание битов регистра DAC_MUTE2

Номер бита	Имя бита	Установки	Описание	Сброс	Доступ
7	DAC16_MUTE		Плавное выключение звука 16	0x0	RW
			канала.		
		0	Звук включен.		
		1	Звук выключен.		
6	DAC15_MUTE		Плавное выключение звука 15	0x0	RW
			канала.		
		0	Звук включен.		
		1	Звук выключен.		
5	DAC14_MUTE		Плавное выключение звука 14 канала.	0x0	RW
		0	Звук включен.		
		1	Звук выключен.		
4	DAC13_MUTE	1	Плавное выключение звука 13	0x0	RW
'	Driets_weth		канала.	OAO	10,11
		0	Звук включен.		
		1	Звук выключен.		
3	DAC12_MUTE		Плавное выключение звука 12	0x0	RW
			канала.		
		0	Звук включен.		
		1	Звук выключен.		
2	DAC11_MUTE		Плавное выключение звука 11	0x0	RW
			канала.		
		0	Звук включен.		
		1	Звук выключен.		
1	DAC10_MUTE		Плавное выключение звука 10	0x0	RW
			канала.		
		0	Звук включен.		
		1	Звук выключен.		
0	DAC09_MUTE		Плавное выключение звука 9	0x0	RW
	_		канала.		
		0	Звук включен.		
		1	Звук выключен.		

4.12 DACMSTR_VOL – регистр управления уровнем громкости всех каналов

Адрес регистра: 0х0В. Состояние после сброса: 0х00.

Таблица 4.13 - Описание битов регистра DACMSTR_VOL

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	DACMSTR_VOL		Уровень громкости всех	0x00	RW
			каналов.		
		00000000	0 дБ (по умолчанию).		
		00000001	-0,375 дБ.		
		00000010	-0,750 дБ.		
		11111110	-95,250 дБ.		
		11111111	-95,625 дБ.		

4.13 DAC01_VOL – регистр управления уровнем громкости 1 канала ЦАП

Адрес регистра: 0х0С. Состояние после сброса: 0х00.

Таблица 4.14 - Описание битов регистра DAC01_VOL

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	DAC01_VOL		Уровень громкости 1 канала.	0x00	RW
		00000000	0 дБ (по умолчанию).		
		00000001	-0,375 дБ.		
		00000010	-0,750 дБ.		
		11111110	-95,250 дБ.		
		11111111	-95,625 дБ.		

4.14 DAC02_VOL – регистр управления уровнем громкости 2 канала ЦАП

Адрес регистра: 0х0D. Состояние после сброса: 0х00.

Таблица 4.15 - Описание битов регистра DAC02_VOL

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	DAC02_VOL		Уровень громкости 2 канала.	0x00	RW
		00000000	0 дБ (по умолчанию).		
		00000001	-0,375 дБ.		
		00000010	-0,750 дБ.		
		11111110	-95,250 дБ.		
		11111111	-95,625 дБ.		

4.15 DAC03_VOL – регистр управления уровнем громкости 3 канала ЦАП

Адрес регистра: 0x0E. Состояние после сброса: 0x00.

Таблица 4.16 - Описание битов регистра DAC03_VOL

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	DAC03_VOL		Уровень громкости 3 канала.	0x00	RW
		00000000	0 дБ (по умолчанию).		
		00000001	-0,375 дБ.		
		00000010	-0,750 дБ.		
		11111110	-95,250 дБ.		
		11111111	-95,625 дБ.		

4.16 DAC04_VOL – регистр управления уровнем громкости 4 канала ЦАП

Адрес регистра: 0x0F. Состояние после сброса: 0x00.

Таблица 4.17 - Описание битов регистра DAC04_VOL

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	DAC04_VOL		Уровень громкости 4 канала.	0x00	RW
		00000000	0 дБ (по умолчанию).		
		00000001	-0,375 дБ.		
		00000010	-0,750 дБ.		
		11111110	-95,250 дБ.		
		11111111	-95,625 дБ.		

4.17 DAC05_VOL – регистр управления уровнем громкости 5 канала ЦАП

Адрес регистра: 0х10. Состояние после сброса: 0х00.

Таблица 4.18 - Описание битов регистра DAC05_VOL

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	DAC05_VOL		Уровень громкости 5 канала.	0x00	RW
		00000000	0 дБ (по умолчанию).		
		00000001	-0,375 дБ.		
		00000010	-0,750 дБ.		
		11111110	-95,250 дБ.		
		11111111	-95,625 дБ.		

4.18 DAC06_VOL – регистр управления уровнем громкости 6 канала ЦАП

Адрес регистра: 0х11. Состояние после сброса: 0х00.

Таблица 4.19 - Описание битов регистра DAC06_VOL

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	DAC06_VOL		Уровень громкости 6 канала.	0x00	RW
		00000000	0 дБ (по умолчанию).		
		00000001	-0,375 дБ.		
		00000010	-0,750 дБ.		
		11111110	-95,250 дБ.		
		11111111	-95,625 дБ.		

4.19 DAC07_VOL – регистр управления уровнем громкости 7 канала ЦАП

Адрес регистра: 0х12. Состояние после сброса: 0х00.

Таблица 4.20 - Описание битов регистра DAC07_VOL

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	DAC07_VOL		Уровень громкости 7 канала.	0x00	RW
		00000000	0 дБ (по умолчанию).		
		00000001	-0,375 дБ.		
		00000010	-0,750 дБ.		
		11111110	-95,250 дБ.		
		11111111	-95,625 дБ.		

4.20 DAC08_VOL – регистр управления уровнем громкости 8 канала ЦАП

Адрес регистра: 0х13. Состояние после сброса: 0х00.

Таблица 4.21 - Описание битов регистра DAC08_VOL

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	DAC08_VOL		Уровень громкости 8 канала.	0x00	RW
		00000000	0 дБ (по умолчанию).		
		00000001	-0,375 дБ.		
		00000010	-0,750 дБ.		
		11111110	-95,250 дБ.		
		11111111	-95,625 дБ.		

4.21 DAC09_VOL – регистр управления уровнем громкости 9 канала ЦАП

Адрес регистра: 0х14. Состояние после сброса: 0х00.

Таблица 4.22 - Описание битов регистра DAC09_VOL

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	DAC09_VOL		Уровень громкости 9 канала.	0x00	RW
		00000000	0 дБ (по умолчанию).		
		00000001	-0,375 дБ.		
		00000010	-0,750 дБ.		
		11111110	-95,250 дБ.		
		11111111	-95,625 дБ.		

4.22 DAC10_VOL – регистр управления уровнем громкости 10 канала ЦАП

Адрес регистра: 0х15. Состояние после сброса: 0х00.

Таблица 4.23 - Описание битов регистра DAC10_VOL

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	DAC10_VOL		Уровень громкости 10 канала.	0x00	RW
		00000000	0 дБ (по умолчанию).		
		00000001	-0,375 дБ.		
		00000010	-0,750 дБ.		
		11111110	-95,250 дБ.		
		11111111	-95,625 дБ.		

4.23 DAC11_VOL – регистр управления уровнем громкости 11 канала ЦАП

Адрес регистра: 0х16. Состояние после сброса: 0х00.

Таблица 4.24 - Описание битов регистра DAC11_VOL

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	DAC11_VOL		Уровень громкости 11 канала.	0x00	RW
		00000000	0 дБ (по умолчанию).		
		00000001	-0,375 дБ.		
		00000010	-0,750 дБ.		
		11111110	-95,250 дБ.		
		11111111	-95,625 дБ.		

4.24 DAC12_VOL – регистр управления уровнем громкости 12 канала ЦАП

Адрес регистра: 0х17. Состояние после сброса: 0х00.

Таблица 4.25 - Описание битов регистра DAC12_VOL

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	DAC12_VOL		Уровень громкости 12 канала.	0x00	RW
		00000000	0 дБ (по умолчанию).		
		00000001	-0,375 дБ.		
		00000010	-0,750 дБ.		
		11111110	-95,250 дБ.		
		11111111	-95,625 дБ.		

4.25 DAC13_VOL – регистр управления уровнем громкости 13 канала ЦАП

Адрес регистра: 0х18. Состояние после сброса: 0х00.

Таблица 4.26 - Описание битов регистра DAC13_VOL

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	DAC13_VOL		Уровень громкости 13 канала.	0x00	RW
		00000000	0 дБ (по умолчанию).		
		00000001	-0,375 дБ.		
		00000010	-0,750 дБ.		
		11111110	-95,250 дБ.		
		11111111	-95,625 дБ.		

4.26 DAC14_VOL – регистр управления уровнем громкости 14 канала ЦАП

Адрес регистра: 0х19. Состояние после сброса: 0х00.

Таблица 4.27 - Описание битов регистра DAC14_VOL

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	DAC14_VOL		Уровень громкости 14 канала.	0x00	RW
		00000000	0 дБ (по умолчанию).		
		00000001	-0,375 дБ.		
		00000010	-0,750 дБ.		
		11111110	-95,250 дБ.		
		11111111	-95,625 дБ.		

4.27 DAC15_VOL – регистр управления уровнем громкости 15 канала ЦАП

Адрес регистра: 0х1А, состояние после сброса: 0х00.

Таблица 4.28 - Описание битов регистра DAC15_VOL

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	DAC15_VOL		Уровень громкости 15 канала.	0x00	RW
		00000000	0 дБ (по умолчанию).		
		00000001	-0,375 дБ.		
		00000010	-0,750 дБ.		
		11111110	-95,250 дБ.		
		11111111	-95,625 дБ.		

4.28 DAC16_VOL – регистр управления уровнем громкости 16 канала ЦАП

Адрес регистра: 0х1В. Состояние после сброса: 0х00.

Таблица 4.29 - Описание битов для DAC16 VOL

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:0]	DAC16_VOL		Уровень громкости 16 канала.	0x00	RW
		00000000	0 дБ (по умолчанию).		
		00000001	-0,375 дБ.		
		00000010	-0,750 дБ.		
		11111110	-95,250 дБ.		
		11111111	-95,625 дБ.		

4.29 CM_SEL_PAD_STRGTH – регистр управления нагрузочной способностью цифровых выходов и вывода общей точки

Адрес регистра: 0х1С. Состояние после сброса: 0х02.

Таблица 4.30 - Описание битов регистра CM_SEL_PAD_STRGTH

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:6]	Зарезервировано	_	Зарезервировано	0x0	R
5	PAD_DRV		Управление нагрузочной	0x0	RW
			способностью вывода.		
			Значения приведены для		
			напряжения IOVCC = 5 B.		
		0	4 мА для всех выводов.		
		1	8 мА для всех выводов.		
[4:0]	Зарезервировано	_	Зарезервировано.	0x02	R

4.30 DAC_POWER1 – регистр настройки потребляемой мощности каналов ЦАП

Адрес регистра: 0х1D. Состояние после сброса: 0хАА.

Таблица 4.31 - Описание битов регистра DAC_POWER1

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:6]	DAC04_POWER		Управление питанием канал 4.	0x2	RW
		00	Низкое потребление.		
		01	Минимальное потребление.		
		10	Лучшее качество сигнала.		
		11	Хорошее качество сигнала.		
[5:4]	DAC03_POWER		Управление питанием канал 3.	0x2	RW
		00	Низкое потребление.		
		01	Минимальное потребление.		
		10	Лучшее качество сигнала.		
		11	Хорошее качество сигнала.		
[3:2]	DAC02_POWER		Управление питанием канал 2.	0x2	RW
		00	Низкое потребление.		
		01	Минимальное потребление.		
		10	Лучшее качество сигнала.		
		11	Хорошее качество сигнала.		
[1:0]	DAC01_POWER		Управление питанием канал 1.	0x2	RW
		00	Низкое потребление.		
		01	Минимальное потребление.		
		10	Лучшее качество сигнала.		
		11	Хорошее качество сигнала.		

4.31 DAC_POWER2 – регистр настройки потребляемой мощности каналов ЦАП

Адрес регистра: 0х1Е. Состояние после сброса: 0хАА.

Таблица 4.32 - Описание битов регистра DAC_POWER2

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:6]	DAC08_POWER		Управление питанием ЦАП,	0x2	RW
			канал 8.		
		00	Низкое потребление.		
		01	Минимальное потребление.		
		10	Лучшее качество сигнала.		
		11	Хорошее качество сигнала.		
[5:4]	DAC07_POWER		Управление питанием ЦАП,	0x2	RW
			канал 7.		
		00	Низкое потребление.		
		01	Минимальное потребление.		
		10	Лучшее качество сигнала.		
		11	Хорошее качество сигнала		
[3:2]	DAC06_POWER		Управление питанием ЦАП,	0x2	RW
			канал 6.		
		00	Низкое потребление.		
		01	Минимальное потребление.		
		10	Лучшее качество сигнала.		
		11	Хорошее качество сигнала.		
[1:0]	DAC05_POWER		Управление питанием ЦАП,	0x2	RW
			канал 5.		
		00	Низкое потребление.		
		01	Минимальное потребление.		
		10	Лучшее качество сигнала.		
		11	Хорошее качество сигнала.		

4.32 DAC_POWER3 – регистр настройки потребляемой мощности каналов ЦАП

Адрес регистра: 0х1F. Состояние после сброса: 0хАА.

Таблица 4.33 - Описание битов регистра DAC_POWER3

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:6]	DAC12_POWER		Управление питанием ЦАП,	0x2	RW
			канал 12.		
		00	Низкое потребление.		
		01	Минимальное потребление.		
		10	Лучшее качество сигнала.		
		11	Хорошее качество сигнала.		
[5:4]	DAC11_POWER		Управление питанием ЦАП,	0x2	RW
			канал 11.		
		00	Низкое потребление.		
		01	Минимальное потребление.		
		10	Лучшее качество сигнала.		
		11	Хорошее качество сигнала.		
[3:2]	DAC10_POWER		Управление питанием ЦАП,	0x2	RW
			канал 10.		
		00	Низкое потребление.		
		01	Минимальное потребление.		
		10	Лучшее качество сигнала.		
		11	Хорошее качество сигнала.		
[1:0]	DAC09_POWER		Управление питанием ЦАП,	0x2	RW
			канал 9.		
		00	Низкое потребление.		
		01	Минимальное потребление.		
		10	Лучшее качество сигнала.		
		11	Хорошее качество сигнала.		

4.33 DAC_POWER4 – регистр настройки потребляемой мощности каналов ЦАП

Адрес регистра: 0х20. Состояние после сброса: 0хАА.

Таблица 4.34 - Описание битов регистра DAC_POWER4

Номер	Имя бита	Установки	Описание	Сброс	Доступ
бита					
[7:6]	DAC16_POWER		Управление питанием ЦАП,	0x2	RW
			канал 16.		
		00	Низкое потребление.		
		01	Минимальное потребление.		
		10	Лучшее качество сигнала.		
		11	Хорошее качество сигнала.		
[5:4]	DAC15_POWER		Управление питанием ЦАП,	0x2	RW
			канал 15.		
		00	Низкое потребление.		
		01	Минимальное потребление.		
		10	Лучшее качество сигнала.		
		11	Хорошее качество сигнала.		
[3:2]	DAC14_POWER		Управление питанием ЦАП,	0x2	RW
			канал 14.		
		00	Низкое потребление.		
		01	Минимальное потребление.		
		10	Лучшее качество сигнала.		
		11	Хорошее качество сигнала.		
[1:0]	DAC13_POWER		Управление питанием ЦАП,	0x2	RW
			канал 13.		
		00	Низкое потребление.		
		01	Минимальное потребление.		
		10	Лучшее качество сигнала.		
		11	Хорошее качество сигнала.		

Таблица 4.35 - Настройка уровня громкости

Двоичное	Значение
значение	уровня
регистра	громкости, дБ
громкости	
00000000	0
00000001	-0,375
0000010	-0,75
00000011	-1,125
00000100	-1,5
00000101	-1,875
00000110	-2,25
00000111	-2,625
00001000	-3
00001001	-3,375
00001010	-3,75
00001011	-4,125
00001100	-4,5
00001101	-4,875
00001110	-5,25
00001111	-5,625
00010000	-6
00010001	-6,375
00010010	-6,75
00010011	-7,125
00010100	-7,5
00010101	-7,875
00010110	-8,25
00010111	-8,625
00011000	-9
00011001	-9,375
00011010	-9,75
00011011	-10,125
00011100	-10,5

r	
Двоичное	Значение
значение	уровня
регистра	громкости, дБ
громкости	
00110101	-19,875
00110110	-20,25
00110111	-20,625
00111000	-21
00111001	-21,375
00111010	-21,75
00111011	-22,125
00111100	-22,5
00111101	-22,875
00111110	-23,25
00111111	-23,625
01000000	-24
01000001	-24,375
01000010	-24,75
01000011	-25,125
01000100	-25,5
01000101	-25,875
01000110	-26,25
01000111	-26,625
01001000	-27
01001001	-27,375
01001010	-27,75
01001011	-28,125
01001100	-28,5
01001101	-28,875
01001110	-29,25
01001111	-29,625
01010000	-30
01010001	-30,375
	1

Продолжение таблицы 4.35

Двоичное	Значение	Двоичное	Значение	
значение	уровня	значение	уровня	
регистра	регистра громкости, дБ		громкости,	
громкости		громкости	дБ	
00011101	-10,875	01010010	-30,75	
00011110	-11,25	01010011	-31,125	
00011111	-11,625	01010100	-31,5	
00100000	-12	01010101	-31,875	
00100001	-12,375	01010110	-32,25	
00100010	-12,75	01010111	-32,625	
00100011	-13,125	01011000	-33	
00100100	-13,5	01011001	-33,375	
00100101	-13,875	01011010	-33,75	
00100110	-14,25	01011011	-34,125	
00100111	-14,625	01011100	-34,5	
00101000	-15	01011101	-34,875	
00101001	-15,375	01011110	-35,25	
00101010	-15,75	01011111	-35,625	
00101011	-16,125	01100000	-36	
00101100	-16,5	01100001	-36,375	
00101101	-16,875	01100010	-36,75	
00101110	-17,25	01100011	-37,125	
00101111	-17,625	01100100	-37,5	
00110000	-18	01100101	-37,875	
00110001	-18,375	01100110	-38,25	
00110010	-18,75	01100111	-38,625	
00110011	-19,125	01101000	-39	
10100	-19,5	01101001	-39,375	
11010100	-79,5	11011111	-83,625	
11010101	-79,875	11100000	-84	
11010110	-80,25	11100001	-84,375	
11010111	-80,625	11100010	-84,75	
11011000	-81	11100011	-85,125	

Продолжение таблицы 4.35

Двоичное	Значение		Двоичное	Значение	
значение	уровня		значение	уровня	
регистра	регистра громкости, дБ		регистра	громкости,	
громкости			громкости	дБ	
11011001	-81,375	1	1100100	-85,5	
11011010	-81,75	1	1100101	-85,875	
11011011	-82,125	1	1100110	-86,25	
11011100	-82,5	1	1100111	-86,625	
11011101	-82,875	1	1101000	-87	
11011110	-83,25	1	1101001	-87,375	
01101010	-39,75	1	0011111	-59,625	
01101011	-40,125	1	0100000	-60	
01101100	-40,5	1	0100001	-60,375	
01101101	-40,875	1	0100010	-60,75	
01101110	-41,25	1	0100011	-61,125	
01101111	-41,625	1	0100100	-61,5	
01110000	-42	1	0100101	-61,875	
01110001	-42,375	1	0100110	-62,25	
01110010	-42,75	1	0100111	-62,625	
01110011	01110011 -43,125		0101000	-63	
01110100	-43,5	1	0101001	-63,375	
01110101	-43,875	1	0101010	-63,75	
01110110	-44,25	1	0101011	-64,125	
01110111	-44,625	1	0101100	-64,5	
01111000	-45	1	0101101	-64,875	
01111001	-45,375	1	0101110	-65,25	
01111010	-45,75	1	0101111	-65,625	
01111011	-46,125	1	0110000	-66	
01111100	-46,5	1	0110001	-66,375	
01111101	-46,875	1	0110010	-66,75	
01111110	-47,25	1	0110011	-67,125	
01111111	-47,625	1	0110100	-67,5	

Продолжение таблицы 4.35

Двоичное	Значение		Двоичное	Значение	
значение	уровня		значение	уровня	
регистра громкости, дБ			регистра	громкости,	
громкости			громкости	дБ	
10000000	-48		10110101	-67,875	
10000001	-48,375		10110110	-68,25	
10000010	-48,75		10110111	-68,625	
10000011	-49,125		10111000	-69	
10000100	-49,5		10111001	-69,375	
10000101	-49,875		10111010	-69,75	
10000110	-50,25		10111011	-70,125	
10000111	-50,625		10111100	-70,5	
10001000	-51		10111101	-70,875	
10001001	-51,375		10111110	-71,25	
10001010	-51,75		10111111	-71,625	
10001011	-52,125		11000000	-72	
10001100	-52,5		11000001	-72,375	
10001101	-52,875		11000010	-72,75	
10001110	-53,25		11000011	-73,125	
10001111	-53,625		11000100	-73,5	
10010000	-54		11000101	-73,875	
10010001	-54,375		11000110	-74,25	
10010010	-54,75		11000111	-74,625	
10010011	-55,125		11001000	-75	
10010100	-55,5		11001001	-75,375	
10010101	-55,875		11001010	-75,75	
10010110	-56,25		11001011	-76,125	
10010111	-56,625		11001100	-76,5	
10011000	-57	1	11001101	-76,875	
10011001	-57,375	1	11001110	-77,25	
10011010	-57,75	1	11001111	-77,625	
10011011	-58,125		11010000	-78	

	,
Двоичное	Значение
значение	уровня
регистра	громкости, дБ
громкости	
10011100	-58,5
10011101	-58,875
10011110	-59,25
11101010	-87,75
11101011	-88,125
11101100	-88,5
11101101	-88,875
11101110	-89,25
11101111	-89,625
11110000	-90
11110001	-90,375
11110010	-90,75
11110011	-91,125
11110100	-91,5

Двоичное	Значение
значение	уровня
регистра	громкости,
громкости	дБ
11010001	-78,375
11010010	-78,75
11010011	-79,125
11110101	-91,875
11110110	-92,25
11110111	-92,625
11111000	-93
11111001	-93,375
11111010	-93,75
11111011	-94,125
11111100	-94,5
11111101	-94,875
11111110	-95,25
11111111	-95,625

Заключение

В настоящем руководстве пользователя рассмотрены архитектура, функциональное построение и особенности применения микросхемы 1273НА084, которая является 16-канальным 24-разрядным ЦАП со схемой ФАПЧ, дифференциальными выходами по напряжению и последовательным интерфейсом данных.

Все значения электрических параметров микросхемы приведены в технических условиях на изделие АЕНВ.431320.509ТУ.

Значения параметров, приведенные в настоящем техническом описании, являются справочными.

Данное руководство пользователя может служить практическим руководством по применению микросхемы 1273HA084 для разработки систем на ее основе.

Микросхема 1273HA084 может применяться в автомобильных аудиосистемах, домашних кинотеатрах, процессорах цифровых звуковых эффектов и т. д.

Приложение А

(обязательное)

Термины, определения и буквенные обозначения параметров, неустановленные действующими стандартами

Таблица А.1

Наименование параметра	Буквенное обозначение параметра	Определение параметра				
1	2	3				
Разрешение	N	Двоичный логарифм максимального числа кодовых комбинаций на входе ЦАП				
Погрешность смещения нуля	E_0	Отклонение выходного сигнала от идеального в точке соответствия нулевому коду				
Погрешность усиления	E_{G}	Отклонение выходного сигнала от идеального значения в точке полной шкалы при условии отсутствия смещения нуля				
Интегральная нелинейность	$\mathrm{E_{L}}$	Отклонение реальной характеристики преобразования от идеальной линии после исключения погрешностей смещения нуля и усиления				
Динамический диапазон	DNR	Отношение среднеквадратичного значения первой гармоники к среднему квадратичному значению шумов и высших гармоник выходного сигнала при подаче на вход синусоиды максимальной амплитуды				
Время установления	$t_{\rm s}$	Время, отсчитываемое от подачи входного кода до установления выходного сигнала в заданном диапазоне				
Частота преобразования	Fs	Частота, с которой выходные цифровые коды могут непрерывно преобразовываться в аналоговый сигнал с заданными характеристиками преобразования				

		·
		Отношение среднеквадратичного значения
		суммы амплитуд гармоник, исключая первую, к
		среднеквадратичному значению амплитуды
		основной составляющей выходного сигнала,
Общие	THD	выраженное в децибелах. Определяется по
гармонические		формуле
искажения	THE	THD = $10 \lg((V_2^2 + V_3^2 + + V_i^2) / V_1^2)$, (A.1)
пекажения		где $(V_2^2 + V_3^2 + + V_i^2)$ – среднеквадратичное
		значение суммы амплитуд гармоник от второй до
		і-той;
		$V_1{}^2$ – среднеквадратичное значение
		амплитуды основной составляющей.
	SNR	Отношение среднеквадратичного значения
		амплитуды основной составляющей
		восстановленного сигнала к среднеквадратичному
		значению суммы всех спектральных
		составляющих, исключая гармоники, выраженное
Отношение		в децибелах.
сигнал/шум		Определяется по формуле
сигнал/шум		SNR = $10 \lg(V_1^2/(V_2^2 + V_3^2 + + V_i^2))$, (A.3)
		где $V_1{}^2$ – среднеквадратичное значение
		амплитуды основной составляющей;
		$(V_2^2 + V_3^2 + + V_i^2)$ – среднеквадратичное
		значение суммы всех спектральных
		составляющих, исключая гармоники.
Максимальная		Максимальная частота обновления входных
частота		данных
обновления	f_{D}	
входных		
данных		

Лист регистрации изменений

	Номе	ера листо	в (стран	иц)	Всего			
Изм.	изме- ненных	заме- ненных	НОВЫХ	анну- лиро- ванных	листов (страниц) в документе	Номер документа	Подпись	Дата